Surface hardening on WC-Ni cemented carbides was achieved by high-intensity pulsed ion beam (HIPIB) irradiation, with formation of a binderless, densified, and “hilly” remelted top layer of a few μm in depth and a shock strengthened underlayer down to a hundred μm. The tribological behavior of the samples was studied under dry sliding against GCr15 bearing steel on a block-on-ring tribometer with 98 N and 0.47 m/s. The specific wear rate/wear resistance presented an exponential dependence on the surface hardness, in contrast to the commonly reported linear dependence of the specific wear rate or wear resistance on the hardness of WC based cemented carbides among both WC-Ni and WC-Co systems. The original samples underwent a severe abrasive wear due to the Ni binder micro-abrasion and WC grain fragmentation/pullout, whereas the irradiated samples began with a gradual abrasion of the binderless hard tops, followed by a mild abrasive wear accompanied by local adhesive wear. The wear resistance has been also compared with the reported data concerning the relative hardness of friction pairs in a value range of 2–7 on block-on-ring tribometer tests with the friction pairs of WC cemented carbides and steels in unlubricated condition. The nonlinear wear response is explained by the wear mechanism transition otherwise unobtainable in the case of the reported hardening by either lowering the binder content or refining the WC grains. It is revealed that the interfacial bonding enhancement of the WC/binder and the binder strengthening are pronounced for improving the wear resistance of the cemented carbides, by the effective suppressing of the WC grain fragmentation/pullout and binder micro-abrasion, even though they have limited contribution to the hardness enhancement.

References

1.
Engqvist
,
H. G.
,
Botton
,
A.
,
Ederyd
,
S.
,
Phaneuf
,
M.
,
Fondelius
,
J.
, and
Axén
,
N.
,
2000
, “
Wear Phenomena on WC-Based Face Seal Rings
,”
Int. J. Refract. Met. Hard Mater.
,
18
, pp.
39
46
.10.1016/S0263-4368(00)00011-1
2.
Gee
,
M. G.
,
Gant
,
A.
, and
Roebck
,
B.
,
2007
, “
Wear Mechanisms in Abrasion and Erosion of WC/Co and Related Hardmetals
,”
Wear
,
263
, pp.
137
148
.10.1016/j.wear.2006.12.046
3.
Klaasen
,
H.
,
Kübarsepp
,
J.
,
Roosaar
,
T.
,
Viljus
,
M.
, and
Traksmaa
,
R.
,
2010
, “
Adhesive Wear Performance of Hardmetals and Cermets
,”
Wear
,
268
, pp.
1122
1128
.10.1016/j.wear.2010.01.006
4.
Schneider
,
D. S.
and
Stephens
,
L. S.
,
2006
, “
An Experimental Study on the Impact of Interface Temperature on Thermally Induced Wear Transitions in Dry Sliding
,”
ASME J. Tribol.
,
128
, pp.
460
468
.10.1115/1.2197841
5.
Engqvist
,
H.
,
Beste
,
U.
, and
Axén
,
N.
,
2000
, “
The Influence of pH on Sliding Wear of WC Based Materials
,”
Int. J. Refract. Met. Hard Mater.
,
18
, pp.
103
109
.10.1016/S0263-4368(00)00007-X
6.
Human
,
A. M.
and
Exner
,
H. E.
,
1997
, “
The Relationship Between Electrochemical Behavior and In-Service Corrosion of WC Based Cemented Carbides
,”
Int. J. Refract. Met. Hard Mater.
,
15
, pp.
65
71
.10.1016/S0263-4368(96)00014-5
7.
Davis
,
H. A.
,
Remnev
,
G. E.
,
Stinnett
,
R. W.
, and
Yatsui
,
K.
,
1996
, “
Intense Ion-Beam Treatment of Materials
,”
MRS Bull.
,
21
, pp.
58
62
.
8.
Renk
,
T. J.
,
Provencio
,
P. P.
,
Parasad
,
S. V.
,
Shlapakovski
,
A. S.
,
Petrov
,
A. V.
,
Yatsui
,
K.
,
Jiang
,
W.
, and
Suematsu
,
H.
,
2004
, “
Material Modification Using Intense Ion Beam
,”
Proc. IEEE
,
92
, pp.
1057
1081
.10.1109/JPROC.2004.829024
9.
Wang
,
Z. P.
,
Yousefi
,
H. R.
,
Nishino
,
Y.
,
Ito
,
H.
, and
Masugata
,
K.
,
2009
, “
Fabrication of DLC Films by Pulsed Ion Beam Ablation in a Dense Plasma Focus Device
,”
Phys. Lett. A
,
373
, pp.
4169
4173
.10.1016/j.physleta.2009.09.033
10.
Li
,
P.
,
Lei
,
M. K.
, and
Zhu
,
X. P.
,
2010
, “
Dry Sliding Tribological Behavior of AZ31 Magnesium Alloy by High-Intensity Pulsed Ion Beam
,”
Surf. Coat. Technol.
,
257
, pp.
72
81
.10.1016/j.apsusc.2010.06.036
11.
Uglov
,
V. V.
,
Remnev
,
G. E.
,
Kuleshov
,
A. K.
, and
Saltymakov
,
M. S.
,
2011
, “
Modification of Hard Alloy by the Action of High Power Ion Beams
,”
Surf. Coat. Technol.
,
206
, pp.
781
784
.10.1016/j.surfcoat.2011.04.056
12.
Lei
,
M. K.
,
Zhu
,
X. P.
,
Liu
,
C.
,
Xin
,
J. P.
,
Han
,
X. G.
,
Li
,
P.
,
Dong
,
Z. H.
,
Wang
,
X.
, and
Miao
,
S. M.
,
2009
, “
A Novel Shock Processing by High-Intensity Pulsed Ion Beam
,”
ASME J. Manuf. Sci. Eng.
,
131
, p.
031013
.10.1115/1.3139214
13.
Jia
,
K.
and
Fischer
,
T. E.
,
1997
, “
Sliding Wear of Conventional and Nanostructured Cemented Carbides
,”
Wear
,
203-204
, pp.
310
318
.10.1016/S0043-1648(96)07423-6
14.
Pirso
,
J.
,
Viljus
,
M.
, and
Letunovitš
,
S.
,
2006
, “
Friction and Dry Sliding Wear Behaviour of Cermets
,”
Wear
,
260
, pp.
815
824
.10.1016/j.wear.2005.04.006
15.
Sheikh-Ahmad
,
J. Y.
and
Bailey
,
J. A.
,
1999
, “
The Wear Characteristics of Some Cemented Tungsten Carbides in Machining Particleboard
,”
Wear
,
225-229
, pp.
256
266
.10.1016/S0043-1648(98)00361-5
16.
Bonny
,
K.
,
Baets
,
P. De
,
Vleugels
,
J.
,
Huang
,
S.
, and
Lauwers
,
B.
,
2010
, “
Friction and Wear Characteristics of WC-Co Cemented Carbides in Dry Reciprocating Sliding Contact
,”
Wear
,
268
, pp.
1504
1517
.10.1016/j.wear.2010.02.029
17.
Saito
,
H.
,
Iwabuchi
,
A.
, and
Shimizu
,
T.
,
2006
, “
Effects of Co Content and WC Grain Size on Wear of WC Cemented Carbide
,”
Wear
,
261
, pp.
126
132
.10.1016/j.wear.2005.09.034
18.
Jia
,
K.
and
Fischer
,
T. E.
,
1996
, “
Abrasion Resistance of Nanostructured and Conventional Cemented Carbides
,”
Wear
,
200
, pp.
206
214
.10.1016/S0043-1648(96)07277-8
19.
Pirso
,
J.
,
Letunovitš
,
S.
, and
Viljus
,
M.
,
2004
, “
Friction and Wear Behaviour of Cemented Carbides
,”
Wear
,
257
, pp.
257
265
.10.1016/j.wear.2003.12.014
20.
Bonny
,
K.
,
Baets
,
P. De
,
Vleugels
,
J.
,
Huang
,
S.
, and
Lauwers
,
B.
,
2008
, “
Dry Reciprocating Sliding Friction and Wear Response of WC-Ni Cemented Carbides
,”
Tribol. Lett.
,
31
, pp.
199
209
.10.1007/s11249-008-9352-z
21.
Zhu
,
X. P.
,
Lei
,
M. K.
,
Dong
,
Z. H.
, and
Ma
,
T. C.
,
2003
, “
Characterization of a High-Intensity Unipolar-Mode Pulsed Ion Source With Improved Magnetically Insulated Diode
,”
Rev. Sci. Instrum.
,
74
, pp.
47
52
.10.1063/1.1529303
22.
Li
,
T.
,
Lou
,
Q.
,
Dong
,
J.
,
Wei
,
Y.
, and
Liu
,
J.
,
2001
, “
Escape of Carbon Element in Surface Ablation of Cobalt Cemented Tungsten Carbide With Pulsed UV Laser
,”
Appl. Surf. Sci.
,
172
, pp.
51
60
.10.1016/S0169-4332(00)00829-1
23.
Gubisch
,
M.
,
Liu
,
Y.
,
Krischok
,
S.
,
Ecke
,
G.
,
Spiess
,
L.
,
Schaefer
,
J. A.
, and
Knedlik
,
C.
,
2005
, “
Tribological Characteristics of WC1-x, W2C and WC Tungsten Carbide Films
,”
Tribol. Interface Eng. Ser.
,
48
, pp.
409
417
.10.1016/S0167-8922(05)80043-4
24.
Su
,
Y. D.
,
Hu
,
C. Q.
,
Wang
,
C.
,
Wen
,
M.
, and
Zheng
,
W.T.
,
2009
, “
Relatively Low Temperature Synthesis of Hexagonal Tungsten Carbide Films by N Doping and Its Effect on the Preferred Orientation, Phase Transition, and Mechanical Properties
,”
J. Vac. Sci. Technol. A
,
27
, pp.
167
173
.10.1116/1.3058721
25.
Larsen-Basse
,
J.
,
1985
, “
Binder Extrusion in Sliding Wear of WC-Co Alloys
,”
Wear
,
105
, pp.
247
256
.10.1016/0043-1648(85)90071-7
26.
Uglov
,
V. V.
,
Remnev
,
G. E.
,
Kuleshov
,
A. K.
,
Astashinski
,
V. M.
, and
Saltymakov
,
M. S.
,
2010
, “
Formation of Hardened Layer in WC-TiC-Co Alloy by Treatment of High Intensity Pulse Ion Beam and Compression Plasma
,”
Surf. Coat. Technol.
,
204
, pp.
1952
1956
.10.1016/j.surfcoat.2009.09.039
27.
Gnyusov
,
S.
,
Tarasov
,
S.
,
Ivanov
,
Yu.
, and
Rothstein
,
V.
,
2004
, “
The Effect of Pulsed Electron Beam Melting on Microstructure, Friction and Wear of WC–Hadfield Steel Hard Metal
,”
Wear
,
257
, pp.
97
103
.10.1016/j.wear.2003.10.011
You do not currently have access to this content.