Surface hardening on WC-Ni cemented carbides was achieved by high-intensity pulsed ion beam (HIPIB) irradiation, with formation of a binderless, densified, and “hilly” remelted top layer of a few μm in depth and a shock strengthened underlayer down to a hundred μm. The tribological behavior of the samples was studied under dry sliding against GCr15 bearing steel on a block-on-ring tribometer with 98 N and 0.47 m/s. The specific wear rate/wear resistance presented an exponential dependence on the surface hardness, in contrast to the commonly reported linear dependence of the specific wear rate or wear resistance on the hardness of WC based cemented carbides among both WC-Ni and WC-Co systems. The original samples underwent a severe abrasive wear due to the Ni binder micro-abrasion and WC grain fragmentation/pullout, whereas the irradiated samples began with a gradual abrasion of the binderless hard tops, followed by a mild abrasive wear accompanied by local adhesive wear. The wear resistance has been also compared with the reported data concerning the relative hardness of friction pairs in a value range of 2–7 on block-on-ring tribometer tests with the friction pairs of WC cemented carbides and steels in unlubricated condition. The nonlinear wear response is explained by the wear mechanism transition otherwise unobtainable in the case of the reported hardening by either lowering the binder content or refining the WC grains. It is revealed that the interfacial bonding enhancement of the WC/binder and the binder strengthening are pronounced for improving the wear resistance of the cemented carbides, by the effective suppressing of the WC grain fragmentation/pullout and binder micro-abrasion, even though they have limited contribution to the hardness enhancement.
Skip Nav Destination
Article navigation
January 2014
Research-Article
Nonlinear Wear Response of WC-Ni Cemented Carbides Irradiated by High-Intensity Pulsed Ion Beam
M. K. Lei
M. K. Lei
1
e-mail: surfeng@dlut.edu.cn
Surface Engineering Laboratory,
School of Materials Science and Engineering,
Surface Engineering Laboratory,
School of Materials Science and Engineering,
Dalian University of Technology
,Dalian 116024
, China
1Corresponding author.
Search for other works by this author on:
M. K. Lei
e-mail: surfeng@dlut.edu.cn
Surface Engineering Laboratory,
School of Materials Science and Engineering,
Surface Engineering Laboratory,
School of Materials Science and Engineering,
Dalian University of Technology
,Dalian 116024
, China
1Corresponding author.
Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received May 7, 2013; final manuscript received September 4, 2013; published online November 18, 2013. Assoc. Editor: Dae-Eun Kim.
J. Tribol. Jan 2014, 136(1): 011603 (10 pages)
Published Online: November 18, 2013
Article history
Received:
May 7, 2013
Revision Received:
September 4, 2013
Citation
Zhu, X. P., Zhang, F. G., Song, T. K., and Lei, M. K. (November 18, 2013). "Nonlinear Wear Response of WC-Ni Cemented Carbides Irradiated by High-Intensity Pulsed Ion Beam." ASME. J. Tribol. January 2014; 136(1): 011603. https://doi.org/10.1115/1.4025626
Download citation file:
Get Email Alerts
Related Articles
A Novel Shock Processing by High-Intensity Pulsed Ion Beam
J. Manuf. Sci. Eng (June,2009)
Wear Mechanisms of Untreated and Gamma Irradiated Ultra-High Molecular Weight Polyethylene for Total Joint Replacements
J. Tribol (April,2005)
Tribological Influences of CuO Into 3Y-TZP Ceramic Composite in Conformal Contact
J. Tribol (March,2019)
Tribological Performances of Modified Babbitt Alloy Under Different Sliding Modes
J. Tribol (June,2021)
Related Chapters
Wear and Contact Fatigue Properties of a Novel Lubricant Additive
Bearing and Transmission Steels Technology
Understanding the Problem
Design and Application of the Worm Gear
Nuclear Fuel Materials and Basic Properties
Fundamentals of Nuclear Fuel