In this investigation, a three-dimensional (3D) finite element (FE) model was developed to study subsurface initiated spalling observed in rolling line contact of tribo components such as bearings. An elastic–kinematic hardening–plastic material model is employed to capture the material behavior of bearing steel and is coupled with the continuum damage mechanics (CDM) approach to capture the material degradation due to fatigue. The fatigue damage model employs both stress and accumulated plastic strain based damage evolution laws for fatigue failure initiation and propagation. Failure is modeled by mesh partitioning along unstructured, nonplanar, intergranular paths of the microstructure topology represented by randomly generated Voronoi tessellations. The elastic–plastic model coupled with CDM was used to predict both ratcheting behavior and fatigue damage in heavily loaded contacts. Fatigue damage induced due to the accumulated plastic strains around broken intergranular joints drive the majority of the crack propagation stage, resulting in a lower percentage of life spent in propagation. The 3D FE model was used to determine fatigue life at different contact pressures ranging from 2 to 4.5 GPa for 33 different randomly generated microstructure topology models. The effect of change in contact pressure due to subsurface damage and plastic strain accumulation was also captured by explicitly modeling the rolling contact geometry and the results were compared to those generated assuming a Hertzian pressure profile. The spall shape, fatigue lives, and their dispersion characterized by Weibull slopes obtained from the model correlate well with the previously published experimental results.

References

References
1.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
2.
Littmann
,
W. E.
, and
Widner
,
R. L.
,
1966
, “
Propagation of Contact Fatigue From Surface and Subsurface Origins
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
624
636
.10.1115/1.3645922
3.
Littmann
,
W. E.
,
1969
, “
The Mechanism of Contact Fatigue
,”
Proceedings of the Symposium on Interdisciplinary Aapproach to the Lubrication of Concentrated Contacts
,
P. M.
Ku
, Ed., NASA Special Report, SP-237, pp.
309
378
.
4.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.10.1115/1.3209132
5.
Goodman
,
J.
,
1912
, “
Roller and Ball Bearings
,”
Proc. Inst. Civil Eng.
,
189
, pp.
82
166
.
6.
Palmgren
,
A.
,
1924
, “
Die Lebensdauer von Kugellagern
,”
Z. Vereines Deutscher Ingenieure
,
68
(
14
), pp.
339
341
(see also “The Service Life of Ball Bearings,” NASA Technical Translation, TT 1-13460,
1971
).
7.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1949
, “
Dynamic Capacity of Rolling Bearings
,”
ASME J. Appl. Mech.
,
16
(
2
), pp.
165
172
.
8.
Haager
,
P. L.
,
Lundberg
,
G.
,
Palmgren
,
A.
,
Lee
,
E. H.
, and
Spicacci
,
A. R.
,
1949
, “
Dynamic Capacity of Rolling Bearings
,”
ASME J. Appl. Mech.
,
16
(
4
), pp.
415
417
.
9.
.
Barnsby
,
R.
: American Society of Mechanical Engineers, Tribology Division, Technical, C, 2003, Life Ratings for Modern Rolling Bearings: A Design Guide for the Application of International Standard ISO 281/2, ASME International, copublished with the Society of Tribologists and Lubrication Engineers (STLE), New York.
10.
Harris
,
T. A.
, and
Barnsby
,
R. M.
,
2001
, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng. Part J
,
215
(
J6
), pp.
577
595
.
11.
Alley
,
E. S.
, and
Neu
,
R. W.
,
2010
, “
Microstructure-Sensitive Modeling of Rolling Contact Fatigue
,”
Int. J. Fatigue
,
32
(
5
), pp.
841
850
.10.1016/j.ijfatigue.2009.07.012
12.
Merwin
,
J. E.
, and
Johnson
,
K. L.
,
1963
, “
An Analysis of Plastic Deformation in Rolling Contact
,”
Proc. Inst. Mech. Eng.
,
177
(
25
), pp.
676
690
.10.1243/PIME_PROC_1963_177_052_02
13.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
,
1985
, “
An Elastic–Plastic Finite-Element Model of Rolling-Contact. 1. Analysis of Single Contacts
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
67
74
.10.1115/1.3169028
14.
Hahn
,
G. T.
,
Bhargava
,
V.
,
Rubin
,
C. A.
,
Chen
,
Q.
, and
Kim
,
K.
,
1987
, “
Analysis of the Rolling-Contact Residual-Stresses and Cyclic Plastic-Deformation of SAE 52100 Steel Ball-Bearings
,”
ASME J. Tribol.
,
109
(
4
), pp.
618
625
.10.1115/1.3261521
15.
Bower
,
A. F.
, and
Johnson
,
K. L.
,
1989
, “
The Influence of Strain-Hardening on Cumulative Plastic-Deformation in Rolling and Sliding Line Contact
,”
J. Mech. Phys. Solids
,
37
(
4
), pp.
471
493
.10.1016/0022-5096(89)90025-2
16.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity. 1. Development of Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
720
725
.10.1115/1.2823355
17.
Eraslan
,
A. N.
,
2004
, “
Von Mises' Yield Criterion and Nonlinearly Hardening Rotating Shafts
,”
Acta Mech.
,
168
(
3–4
), pp.
129
144
.10.1007/s00707-004-0088-z
18.
Branch
,
N. A.
,
Arakere
,
N. K.
,
Forster
,
N.
, and
Svendsen
,
V.
,
2013
, “
Critical Stresses and Strains at the Spall Edge of a Case Hardened Bearing Due to Ball Impact
,”
Int. J. Fatigue
,
47
, pp.
268
278
.10.1016/j.ijfatigue.2012.09.008
19.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
042201
.10.1115/1.2959109
20.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2010
, “
A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
132
(
2
), p.
021404
.10.1115/1.4001012
21.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
.10.1016/j.triboint.2010.03.019
22.
Lemaître
,
J.
,
1992
,
A Course on Damage Mechanics
,
Springer
,
Berlin
.
23.
Grabulov
,
A.
,
Ziese
,
U.
, and
Zandbergen
,
H. W.
,
2007
, “
TEM/SEM Investigation of Microstructural Changes Within the White Etching Area Under Rolling Contact Fatigue and 3-D Crack Reconstruction by Focused Ion Beam
,”
Scr. Mater.
,
57
(
7
), pp.
635
638
.10.1016/j.scriptamat.2007.06.024
24.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Kotzalas
,
M. N.
, and
Doll
,
G.
,
2012
, “
Effects of Plasticity on Subsurface Initiated Spalling in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
36
(
1
), pp.
80
95
.10.1016/j.ijfatigue.2011.08.012
25.
Grant
,
A. F.
, Jr.
,
2004
,
Fundamentals of Structural Integrity: Damage Tolerant Design and Nondestructive Evaluation
,
John Wiley and Sons
,
Hoboken, NJ
.
26.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2012
, “
Three-Dimensional Modelling of Intergranular Fatigue Failure of Fine Grain Polycrystalline Metallic MEMS Devices
,”
Fatigue Fracture Eng. Mater. Struct.
,
35
, pp.
1007
1021
.
27.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Wang
,
C.-P.
, and
Sadeghi
,
F.
,
2012
, “
Experimental and Numerical Investigation of Fatigue of Thin Tensile Specimen
,”
Int. J. Fatigue
,
44
, pp.
116
130
.10.1016/j.ijfatigue.2012.05.013
28.
Bomidi
,
J.
,
Weinzapfel
,
N.
,
Slack
,
T.
,
Mobasher Moghaddam
,
S.
,
Sadeghi
,
F.
,
Liebel
,
A.
,
Weber
,
J.
, and
Kreis
,
T.
,
2013
, “
Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel
,”
ASME J. Tribol.
,
135
(
3
), p.
031103
.10.1115/1.4023807
29.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2013
, “
Numerical Modeling of Sub-Surface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
59
, pp.
210
221
.10.1016/j.triboint.2012.03.006
30.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.10.1080/10402004.2012.754072
31.
Warhadpande
,
A.
,
Jalalahmadi
,
B.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
A New Finite Element Fatigue Modeling Approach for Life Scatter in Tensile Steel Specimens
,”
Int. J. Fatigue
,
32
(
4
), pp.
685
697
.10.1016/j.ijfatigue.2009.10.003
32.
Slack
,
T.
, and
Sadeghi
,
F.
,
2011
, “
Cohesive Zone Modeling of Intergranular Fatigue Damage in Rolling Contacts
,”
Tribol. Int.
,
44
(
7–8
), pp.
797
804
.10.1016/j.triboint.2011.02.003
33.
Weinzapfel
,
N.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2011
, “
Microscale Influences on Rolling Contact Fatigue Life Dispersion
,”
Tribol. Lubr. Technol.
,
67
(
3
), pp.
17
19
.
34.
Weinzapfel
,
N.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2011
, “
A 3D Finite Element Model for Investigating Effects of Material Microstructure on Rolling Contact Fatigue
,”
Tribol. Lubr. Technol.
,
67
(
1
), pp.
17
19
.
35.
Weinzapfel
,
N.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2010
, “
An Approach for Modeling Material Grain Structure in Investigations of Hertzian Subsurface Stresses and Rolling Contact Fatigue
,”
ASME J. Tribol.
,
132
(
4
), p.
041404
.10.1115/1.4002521
36.
Xiao
,
Y. C.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.10.1016/S0142-1123(98)00005-X
37.
Tallian
,
T. E.
,
1992
, “
The Failure Atlas For Hertz Contact Machine Elements
,”
Mech. Eng.
,
114
(
3
), pp.
66
69
.
38.
Bolotin
,
V. V.
, and
Belousov
,
I. L.
,
2001
, “
Early Fatigue Crack Growth as the Damage Accumulation Process
,”
Probabilistic Eng. Mech.
,
16
(
4
), pp.
279
287
.10.1016/S0266-8920(01)00020-0
39.
Shimizu
,
S.
,
Tsuchiya
,
K.
, and
Tosha
,
K.
,
2009
, “
Probabilistic Stress-Life (P-S-N) Study on Bearing Steel Using Alternating Torsion Life Test
,”
Tribol. Trans.
,
52
(
6
), pp.
807
816
.10.1080/10402000903125345
40.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
,
1985
, “
An Elastic–Plastic Finite-Element Model of Rolling-Contact. 1. Analysis of Repeated Contacts
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
75
82
.10.1115/1.3169030
41.
Chaboche
,
J. L.
,
Kanoute
,
P.
, and
Azzouz
,
F.
,
2012
, “
Cyclic Inelastic Constitutive Equations and Their Impact on the Fatigue Life Predictions
,”
Int. J. Plastic.
,
35
, pp.
44
66
.10.1016/j.ijplas.2012.01.010
42.
Jiang
,
Y. Y.
,
Xu
,
B. Q.
, and
Sehitoglu
,
H.
,
2002
, “
Three-Dimensional Elastic–Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
,
124
(
4
), pp.
699
708
.10.1115/1.1491978
43.
Chen
,
Q.
,
Shao
,
E. Y.
,
Zhao
,
D. M.
,
Guo
,
J. W.
, and
Fan
,
Z. G.
,
1991
, “
Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steel
,”
Wear
,
147
(
2
), pp.
285
294
.10.1016/0043-1648(91)90186-X
44.
Chen
,
L. C.
,
Chen
,
Q.
, and
Shao
,
E. Y.
,
1989
, “
Study on Initiation and Propagation Angles of Subsurface Cracks in Gcr15 Bearing Steel Under Rolling-Contact
,”
Wear
,
133
(
2
), pp.
205
218
.10.1016/0043-1648(89)90036-7
45.
Jin
,
X. Z.
, and
Kang
,
N. Z.
, “
A Study on Rolling Bearing Contact Fatigue Failure by Macro-Observation and Micro-Analysis
,”
Proc. Int. Conf. Wear Mater.
1989
, Wear, pp.
205
213
.
46.
Weinzapfel
,
N.
,
2012
, “
Three-Dimensional Finite Element Modeling of Rolling Contact Fatigue
,” Ph.D., Purdue University, West Lafayette.
47.
Styri
,
H.
,
1951
, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,”
Proc. Am. Soc. Testing Mater.
,
51
, pp.
682
700
.
You do not currently have access to this content.