In this paper, it is shown how vaporous cavitation in lubricant films can be modeled in a physically justified manner through the constitutive (compressibility) relation of the fluid. The method treats the flow as a homogeneous mixture employing a “void fraction” variable to quantify the intensity of cavitation. It has been already proposed to study cavitation in fluid mechanics. It is shown how the widely used Jakobsson–Floberg–Olsson (JFO) / Elrod–Adams (EA) mass flow conservation model can be compared with this new model. Moreover, the new model can incorporate the variation of the viscosity in the cavitation region and allows the pressure to fall below a cavitation pressure. Numerical computations show that discrepancy with JFO/EA is mostly associated with light loading condition, starved situation or viscosity effects.

References

References
1.
Cole
,
J. A.
, and
Hughes
,
C. J.
,
1956
, “
Oil Flow and Film Extend in Complete Journal Bearings
,”
Proc. ImechE
,
170
, pp.
499
510
.10.1243/PIME_PROC_1956_170_052_02
2.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill Book Co.
,
New York
.
3.
Zeiden
,
F. Y.
, and
Vance
,
J. M.
,
1990
, “
Cavitation Regimes in Squeeze Film Dampers and Their Effect on the Pressure Distribution
,”
Tribol. Trans.
,
33
(
3
), pp.
447
453
.10.1080/10402009008981975
4.
Braun
,
M. J.
, and
Hendricks
,
R. C.
,
1983
, “
An Experimental Investigation of the Vaporous/Gaseous Cavity Characteristics of an Eccentric Journal Bearing
,”
ASLE Trans.
,
27
, pp.
1
14
.10.1080/05698198408981539
5.
Sun
,
D. C.
,
Brewe
,
D. E.
, and
Abel
,
P. B.
,
1993
, “
Simultaneous Pressure Measurement and High–Speed Photography Study of Cavitation in a Dynamically Loaded Journal Bearing
,”
ASME J. Tribol.
,
115
, pp.
88
95
.10.1115/1.2920991
6.
Diaz
,
S.
, and
San Andrés
,
L. A.
,
2001
, “
A Model for Squeeze Film Dampers Operating With Air Entrainment and Validation With Experiments
,”
ASME J. Tribol.
,
123
, pp.
125
133
.10.1115/1.1330742
7.
Ku
,
C.-P.
, and
Tichy
,
J.
,
1990
, “
An Experimental and Theoritical Study of Cavitation in a Finite Submerged Squeeze Film Damper
,”
ASME J. Tribol.
,
112
, pp.
725
733
.10.1115/1.2920321
8.
Braun
,
M. J.
, and
Hannon
,
W. M.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
224
, pp.
839
863
.10.1243/13506501JET772
9.
Zuber
,
N.
, and
Dougherty
,
D. E.
,
1982
, “
The Field Equations for Two Phase Reynolds Film Flow With a Change of Phase
,”
ASLE Trans.
,
25
(
1
), pp.
108
116
.10.1080/05698198208983072
10.
Chamniprasart
,
K.
,
Al-Sharif
,
A.
,
Rajagopal
,
K. R.
, and
Szeri
,
A. Z.
,
1993
, “
Lubrication With Binary Mixtures: Bubbly Oil
,”
ASME J. Tribol.
,
115
, pp.
253
260
.10.1115/1.2920999
11.
Dowson
,
D.
, and
Taylor
,
C. M.
,
1975
, “
Fundamental Aspects of Cavitation in Bearings
,”
Cavitation and Related Phenomena In Lubrication
,
Mechanical Engineering Publications for the Institute of Tribology, The University of Leeds
,
Leeds, UK
, pp.
15
25
.
12.
Christopherson
,
D. G.
,
1941
, “
A New Mathematical Method for the Solution of Film Lubrication Problem
,”
Inst. Mech. Eng. Proc.
,
146
, pp.
126
135
.10.1243/PIME_PROC_1941_146_027_02
13.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
,
The Finite Journal Bearing Considering Vaporization
,
Chalmers University of Technology
,
Gothenburg, Germany
.
14.
Elrod
,
H. G.
, and
Adams
,
L.
,
1975
, “
A Computer Program for Cavitation and Starvation
,”
Cavitation and Related Phenomena in Lubrication
,
Mechanical Engineering Publications for the Institute of Tribology, The University of Leeds
,
Leeds, UK
, pp.
37
41
.
15.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, Jr.
,
1990
, “
An Efficient, Robust and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME J. Tribol.
,
112
, pp.
44
51
.10.1115/1.2920229
16.
Brewe
,
D. E.
,
1986
, “
Theoritical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
108
, pp.
628
638
.10.1115/1.3261288
17.
Hirayama
,
T.
,
Sakurai
,
T.
, and
Yabe
,
H.
,
2004
, “
A Theoretical Analysis Considering Cavitation Occurrence in Oil-Lubricated Spiral-Grooved Journal Bearings With Experimental Verification
,”
ASME J. Tribol.
,
126
, pp.
490
498
.10.1115/1.1691436
18.
Ikeuchy
,
K.
, and
Mori
,
H.
,
1987
, “
The Effects of Cavity Fluctuation on the Elastic and Damping Properties of Journal Bearings
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
53
(
485
), pp.
136
143
(in Japanese).10.1299/kikaic.53.136
19.
Bayada
,
G.
,
Chambat
,
M.
, and
El Alaoui
,
M.
,
1990
, “
Variational Formulations and Finite Element Algorithms for Cavitation Problems
,”
ASME, J. Tribol.
,
112
, pp.
398
403
.10.1115/1.2920270
20.
Kumar
,
A.
, and
Booker
,
J. F.
,
1991
, “
A Finite Element Cavitation Algorithm
,”
ASME J. Trbiol.
,
113
, pp.
276
286
.10.1115/1.2920617
21.
Hajjam
,
M.
, and
Bonneau
,
D.
,
2007
, “
A Transient Finite Element Cavitation Algorithm With Application to Radial Lip Seals
,”
Tribol. Int.
,
40
, pp.
1258
1269
.10.1016/j.triboint.2007.01.018
22.
Etsion
,
L.
, and
Ludwig
,
L. P.
,
1982
, “
Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings
,”
ASME J. Lub. Technol.
,
104
, pp.
157
163
.10.1115/1.3253174
23.
Coyne
,
J. C.
, and
Elrod
,
H. G.
,
1970
,“
Conditions for the Rupture of a Lubricating Film, Part 1: Theoretical Model
,”
Trans. ASME J. Lubr. Technol.
,
92
, pp.
451
456
.10.1115/1.3451441
24.
Coyne
,
J.C.
, and
Elrod
,
H. G.
,
1971
, “
Conditions for the Rupture of a Lubricating Film, Part 2: New Boundary Conditions for Reynolds' Equation
,”
Trans. ASME, J. Lubr. Technol.
,
93
, pp.
156
166
.10.1115/1.3451506
25.
Sun
,
D. C.
,
Wen
,
W.
,
Zhiming
,
Z.
,
Xiaoyang
,
C.
, and
Meili
,
S.
,
2008
, “
Theory of Cavitation in an Oscillatory Oil Squeeze Film
,”
Tribol. Trans.
,
51
, pp.
332
340
.10.1080/10402000701793971
26.
Geike
,
T.
, and
Popov
, V
.
,
2009
, “
Cavitation Within the Framework of Reduced Description of Mixed Lubrication
,”
Tribol. Int.
,
42
, pp.
93
98
.10.1016/j.triboint.2008.05.002
27.
Bodeo
,
S.
, and
Booker
,
J. F.
,
1995
, “
Cavitation in Normal Separation of Square and Circular Plates
,”
ASME J. Tribol.
,
117
(3), pp.
403
409
.10.1115/1.2831266
28.
Groper
,
M.
, and
Etsion
,
I.
,
2001
, “
The Effect of Shear Flow and Dissolved Gas Diffusion on the Cavitation in a Submerged Journal Bearing
,”
ASME J. Tribol.
,
123
, pp.
494
500
.10.1115/1.1308026
29.
Groper
,
M.
, and
Etsion
, I
.
,
2002
, “
Reverse Flow as a Possible Mechanism for Cavitation Build-Up in a Submerged Journal Bearing
,”
ASME J. Tribol.
,
124
, pp.
320
326
.10.1115/1.1402130
30.
Pan
,
C. H. T.
,
Kim
,
T. H.
, and
Rencis
,
J. J.
,
2008
, “
Rolling Stream Trails: An Alternative Cavitation Analysis
,”
ASME J. Tribol.
,
130
, p.
021703
.10.1115/1.2908912
31.
Feng
,
N. S.
, and
Hahn
,
E. J.
,
1985
, “
Density and Viscosity Models for Two-Phase Homogeneous Hydrodynamic Damper Fluids
,”
ASLE Trans.
,
29
, pp.
361
369
.10.1080/05698198608981697
32.
Tao
,
L.
,
Diaz
,
S.
,
San Andrés
,
L. S.
, and
Rajagopal
,
K. R.
,
2000
, “
Analysis of Squeeze Film Dampers Operating With Bubbly Lubricants
,”
ASME J. Tribol.
,
122
, pp.
205
210
.10.1115/1.555344
33.
Diaz
,
S.
, and
San Andrés
,
L.
,
2001
, “
A Model for Squeeze Film Dampers Operating With Air Entrainment and Validation With Experiments
,”
ASME J. Tribol.
,
123
, pp.
125
133
.10.1115/1.1330742
34.
Xing
,
C.
,
Braun
,
M. J.
, and
Li
,
H.
,
2009
, “
A Three Dimensional Navier–Stokes Based Numerical Model for Squeeze—Film Dampers. Part 1: Effects of Gaseous Cavitation on Pressure Distribution and Damping Coefficients Without Consideration of Inertia
,”
Tribol. Trans.
,
52
, pp.
680
694
.10.1080/10402000902913303
35.
Xing
,
C.
,
Braun
,
M. J.
, and
Li
,
H.
,
2009
, “
A Three Dimensional Navier–Stokes Based Numerical Model for Squeeze—Film Dampers. Part 2: Effects of Gaseous Cavitation on the Squeeze Film Dampers
,”
Tribol. Trans.
,
52
, pp.
695
705
.10.1080/10402000902913311
36.
Van Odyck
,
D. E. A.
, and
Venner
,
C. H.
,
2003
, “
Compressible Stokes Flow in Thin Film
,”
ASME J. Tribol.
,
125
, pp.
543
551
.10.1115/1.1539058
37.
Yang
,
J.
,
Zhou
,
L.
, and
Wang
,
Z.
,
2011
, “
Numerical Simulation of Three-Dimensional Cavitation around a Hydrofoil
,”
ASME J. Fluids Eng.
,
133
,
081301
.10.1115/1.4004385
38.
Durany
,
J.
,
Pereira
,
J.
, and
Varas
,
F.
,
2010
, “
Dynamical Stability of Journal-Bearing Devices Through Numerical Simulation of Thermohydrodynamic Models
,”
Tribol. Int.
,
43
, pp.
1703
1718
.10.1016/j.triboint.2010.04.001
39.
Bresh
,
D.
, and
Desjardins
,
B.
,
2007
, “
On the Existence of Global Weak Solutions for a the Navier–Stokes Equations for Viscous Compressible and Heat Conducting Navier Stokes Models
,”
J. Math. Pures. Appl.
,
87
(
1
), pp.
57
90
.10.1016/J.matpur.2006.11.001
40.
Bair
,
S.
,
Khonsari
,
M.
, and
Winer
,
W. O.
,
1998
, “
High Pressure Rheology of Lubricants and Limitations of the Reynolds Equation
,”
Tribol. Int.
,
31
(
10
), pp.
573
586
.10.1016/S0301-679X(98)00078-4
41.
Chupin
,
L.
, and
Sart
,
R.
,
2012
, “
Compressible Flows: New Existence Results and Justification of the Reynolds Asymptotic in Thin Films
,”
Asymptotic Anal.
,
76
(
3–4
), pp.
193
231
.
42.
Fantino
,
R.
,
Frene
,
J.
, and
Godet
,
M.
,
1972
, “
Reynolds Equation in Viscous Film Theory
,”
ASME J. Lubr. Technol.
,
94
, pp.
287
288
.10.1115/1.3451713
43.
Bodeo
,
S.
,
2003
, “
Flow Through Rough Microchannels: A Lubrication Perspective
,”
Proceedings of the First International Conference on Microchannels and Minichannels
,
Rochester, NY
, Apr. 24–25.
44.
Coutier-Delgosha
,
O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behavior of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
527
548
.10.1002/fld.530
45.
Pascarella
,
C.
, and
Salvatore
, V
.
,
2001
, “
Numerical Study of Unsteady Cavitation on a Hydrofoil Section Using a Barotropic Model
,”
Proceedings of the 4th International Symposium on Cavitation
,
Los Angeles, CA
.
46.
Moreau
,
J. B.
,
2005
, “
Modelisation de L'ecoulement Polyphasique a L'interieur et en Sortie D'injecteurs Diesels
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, France.
47.
Cristea
,
A. X.
,
Bouyer
,
J.
,
Fillon
,
M.
, and
Pascovici
,
M. D.
,
2011
, “
Pressure and Temperature Fied Measurements of a Lightly Laded Circumferential Groove Journal Bearing
,”
Trib. Trans.
,
54
, pp.
806
823
.10.1080/10402004.2011.604758
48.
Van Wijngaarden
,
L.
,
1972
, “
One Dimensional Flow of Liquid Containing Small Gas Bubbles
,”
Ann. Rev. Fluid Mech.
,
4
, pp.
369
396
.10.1146/annurev.fl.04.010172.002101
49.
McAdams
,
W. H.
,
Wood
,
W. K.
, and
Bryan
,
R. L.
,
1942
, “
Vaporization Inside Horizontal Tubes: Benzene-Oil Mixtures
,”
Trans. Am. Soc. Mech. Eng.
,
64
, pp.
193
200
.
50.
Hayward
,
A. T. J.
,
1961
, “
The Viscosity of Bubbly Oil
,” Fluids Report No. 99, National Engineering Laboratory, Glasgow, UK.
51.
Wallis
,
G. B.
,
1969
,
One Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
52.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modeling of Cavitation Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil
,”
ASME J. Fluid Mech.
,
240
, pp.
59
96
.10.1017/S002211209200003X
53.
Migout
,
F.
,
2010
, “
Etude Théorique et Expérimentale du Changement de Phase Dans L'interface des Garnitures Mécaniques D’étanchéité
,”
Ph.D. thesis, Université de Poitiers, France.
54.
Klaus
,
E. E.
and
O'Brien
,
J. A.
,
1964
, “
Precise Measurement and Prediction of Bulk Modulus values for Fluids and Lubricants
,”
ASME J. Basic Eng.
,
86
(
3
), pp.
469
473
.10.1115/1.3653146
55.
Sahlin
,
F.
,
Almquist
,
A.
,
Larsson
,
R.
, and
Glavatskih
,
S.
,
2007
, “
A Cavitation Algorithm for Arbitrary Lubricant Compressibility
,”
Tribol. Int.
,
40
, pp.
1294
1300
.10.1016/j.triboint.2007.02.009
56.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto Hydro-Dynamic Lubrication
,
Pergamon Press
,
Oxford, UK
.
57.
Dellanoy
,
Y.
, and
Kueny
,
J. L.
,
1990
, “
Two Phase Flow Approach in Unsteady Cavitation Modeling
,”
Cavitation and Multiphase Flow Forum
, Vol.
98
,
O.
Furuya
, ed.,
ASME
,
New York
, pp.
153
158
.
58.
Hoeijmakers
,
H. W. M.
,
Jansens
,
M. E.
, and
Kwan
,
W.
,
1998
, “
Numerical Simulation of Sheet Cavitation
,”
Proceedings of the Third International Congress on Cavitation
,
Grenoble, France
.
59.
Sobahan
,
M.
, “
Prediction of Tribological and Rheological Properties of Lubricating Oils by Sound Velocity
,” Ph.D. Thesis, School of Science and Engineering, Saga University, Japan.
60.
Ausas
,
R.
,
Ragot
,
P.
,
Leiva
,
J.
,
Jai
,
M.
,
Bayada
,
G.
, and
Buscaglia
,
G. C.
,
2007
, “
The Impact of the Cavitation Model in the Analysis of a Microtextured Lubricated Journal Bearings
,”
ASME J. Tribol.
,
129
(
3
), pp.
868
875
.10.1115/1.2768088
61.
Etsion
, I
.
, and
Pinkus
,
O.
,
1974
, “
Analysis of Short Journal Bearings With New Upstream Boundary Conditions
,”
ASME J. Lubr. Technol.
,
96
, pp.
489
496
.10.1115/1.3452020
62.
Etsion
, I
.
, and
Pinkus
,
O.
,
1975
, “
Solutions of Finite Journal Bearings With Incomplete Films
,”
ASME J. Lubr. Technol.
,
97
, pp.
89
93
.10.1115/1.3452540
63.
Vincent
,
B.
,
Maspeyrot
,
P.
, and
Frêne
,
J.
,
1995
, “
Starvation and Cavitation Effects in Finite Journal Bearings
,”
Lubricants and Lubrication: Proceedings of the 21th Leeds–Lyon Symposium on Tribology
, Vol. 30,
D.
Dowson
,
C.M.
Taylor
,
T. H. C.
Childs
, and
G.
Dalmaz
, eds.,
Elsevier Science Tribology Series
,
New York
, pp.
455
464
.
64.
Liu
,
S.
,
2012
, “
On Boundary Conditions in Lubrication With One Dimensional Analytical Solutions
,”
Tribol. Int.
,
48
, pp.
182
190
.10.1016/j.triboint.2011.11.021
65.
Ausas
,
R.
,
Jai
,
M.
, and
Buscaglia
,
G. C.
,
2009
, “
A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation
,”
ASME J. Tribol.
,
131
, p.
031702
.10.1115/1.3142903
You do not currently have access to this content.