Although nanoparticle additives have been the topic of multiple studies recently, very little work has attempted to explicitly model the third body contact of nanoparticles. This work presents and uses a novel methodology to model nanoparticles in contact between rough surfaces. The model uses two submodels to handle different scales of contact, namely the nano-sized particles and micrometer-sized roughness features. Silicon nanoparticles suspended in conventional lubricant are modeled in contact between steel rough surfaces. The effect of the particles on contact force and real area of contact has been modeled. The model makes predictions of the coefficient of friction and wear using fundamental models. The results suggest that particles would reduce the real area of contact and, therefore, decrease the friction force. Also, particles could induce abrasive wear by scratching the surfaces. The implications of the model are also discussed, and the arguments and results have been linked to available experimental data. This work finds that particle size and distribution are playing a key role in tribology characteristics of the nanolubricants.

References

References
1.
Szlufarska
, I
.
,
Chandross
,
M.
, and
Carpick
,
R. W.
,
2008
, “
Recent Advances in Single-Asperity Nanotribology
,”
J. Phys. D: Appl. Phys.
,
41
(
12
), p.
123001
.10.1088/0022-3727/41/12/123001
2.
Bhushan
,
B.
,
Israelachvili
,
J. N.
, and
Landman
,
U.
,
1995
, “
Nanotribology: Friction, Wear and Lubrication at the Atomic Scale
,”
Nature
,
374
(
6523
), pp.
607
616
.10.1038/374607a0
3.
Harrison
,
J. A.
,
Colton
,
R. J.
,
White
,
C. T.
, and
Brenner
,
D. W.
,
1993
, “
Effect of Atomic-Scale Surface Roughness on Friction: A Molecular Dynamics Study of Diamond Surfaces
,”
Wear
,
168
(
1–2
), pp.
127
133
.10.1016/0043-1648(93)90208-4
4.
Zhang
,
L.
, and
Tanaka
,
H.
,
1998
, “
Atomic Scale Deformation in Silicon Monocrystals Induced by Two-Body and Three-Body Contact Sliding
,”
Tribol. Int.
,
31
(
8
), pp.
425
433
.10.1016/S0301-679X(98)00064-4
5.
Chantrenne
,
P.
,
Raynaud
,
M.
,
Clapp
,
P. C.
,
Rifkin
,
J.
, and
Becquart
,
C. S.
,
2000
, “
Molecular Dynamics Simulations of Friction
,”
Heat Technol.
,
18
(
Suppl. 1
), pp.
49
56
.
6.
Landman
,
U.
,
Luedtke
,
W. D.
, and
Ringer
,
E. M.
,
1992
, “
Atomistic Mechanisms of Adhesive Contact Formation and Interfacial Processes
,”
Wear
,
153
(
1
), pp.
3
30
.10.1016/0043-1648(92)90258-A
7.
Deneen Nowak
,
J.
,
Mook
,
W. M.
,
Minor
,
A. M.
,
Gerberich
,
W. W.
, and
Carter
,
C. B.
,
2007
, “
Fracturing a Nanoparticle
,”
Philos. Mag.
,
87
(
1
), pp.
29
37
.10.1080/14786430600876585
8.
Mook
,
W. M.
,
Nowak
,
J. D.
,
Perrey
,
C. R.
,
Carter
,
C. B.
,
Mukherjee
,
R.
,
Girshick
,
S. L.
,
Mcmurry
,
P. H.
, and
Gerberich
,
W. W.
,
2007
, “
Compressive Stress Effects on Nanoparticle Modulus and Fracture
,”
Phys. Rev. B
,
75
(
21
), p.
214112
.10.1103/PhysRevB.75.214112
9.
Shan
,
Z. W.
,
Adesso
,
G.
,
Cabot
,
A.
,
Sherburne
,
M. P.
,
Syed Asif
,
S. A.
,
Warren
,
O. L.
,
Chrzan
,
D. C.
,
Minor
,
A. M.
, and
Alivisatos
,
A. P.
,
2008
, “
Ultrahigh Stress and Strain in Hierarchically Structured Hollow Nanoparticles
,”
Nature Mater.
,
7
(
12
), pp.
947
952
.10.1038/nmat2295
10.
Gerberich
,
W. W.
,
Michler
,
J.
,
Mook
,
W. M.
,
Ghisleni
,
R.
,
Östlund
,
F.
,
Stauffer
,
D. D.
, and
Ballarini
,
R.
,
2009
, “
Scale Effects for Strength, Ductility, and Toughness in ‘Brittle’ Materials
,”
J. Mater. Res.
,
24
(
3
), pp.
898
906
.10.1557/jmr.2009.0143
11.
Lockwood
,
A. J.
, and
Inkson
,
B. J.
,
2009
, “
In Situ Tem Nanoindentation and Deformation of Si-Nanoparticle Clusters
,”
J. Phys. D: Appl. Phys.
,
42
(
3
), p.
035410
.10.1088/0022-3727/42/3/035410
12.
Mook
,
W. M.
,
Niederberger
,
C.
,
Bechelany
,
M.
,
Philippe
,
L.
, and
Michler
,
J.
,
2010
, “
Compression of Freestanding Gold Nanostructures: From Stochastic Yield to Predictable Flow
,”
Nanotechnology
,
21
(
5
), p.
055701
.10.1088/0957-4484/21/5/055701
13.
Nowak
,
J. D.
,
Beaber
,
A. R.
,
Ugurlu
,
O.
,
Girshick
,
S. L.
, and
Gerberich
,
W. W.
,
2010
, “
Small Size Strength Dependence on Dislocation Nucleation
,”
Scr. Mater.
,
62
(
11
), pp.
819
822
.10.1016/j.scriptamat.2010.01.026
14.
Lahouij
, I
.
,
Dassenoy
,
F.
,
De Knoop
,
L.
,
Martin
,
J.-M.
, and
Vacher
,
B.
,
2011
, “
In Situ Tem Observation of the Behavior of an Individual Fullerene-Like Mos2 Nanoparticle in a Dynamic Contact
,”
Tribol. Lett.
,
42
(
2
), pp.
133
140
.10.1007/s11249-011-9755-0
15.
Zhang
,
N.
,
Deng
,
Q. A.
,
Hong
,
Y.
,
Xiong
,
L. M.
,
Li
,
S.
,
Strasberg
,
M.
,
Yin
,
W. Q.
,
Zou
,
Y. J.
,
Taylor
,
C. R.
,
Sawyer
,
G.
, and
Chen
,
Y. P.
,
2011
, “
Deformation Mechanisms in Silicon Nanoparticles
,”
J. Appl. Phys.
,
109
(
6
), p.
063534
.10.1063/1.3552985
16.
Deneen
,
J.
,
Mook
,
W. M.
,
Minor
,
A.
,
Gerberich
,
W. W.
, and
Barry Carter
,
C.
,
2006
, “
In Situ Deformation of Silicon Nanospheres
,”
J. Mater. Sci.
,
41
(
14
), pp.
4477
4483
.10.1007/s10853-006-0085-9
17.
Xu
,
T.
,
Jiazheng
,
Z.
, and
Kang
,
X.
,
1996
, “
The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive
,”
J. Phys. D: Appl. Phys.
,
29
(
11
), pp.
2932
2937
.10.1088/0022-3727/29/9/036
18.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Xue
,
Q.
,
2000
, “
Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil
,”
Tribol. Lett.
,
8
(
4
), pp.
213
218
.10.1023/A:1019151721801
19.
Rapoport
,
L.
,
Leshchinsky
, V
.
,
Lapsker
, I
.
,
Volovik
,
Y.
,
Nepomnyashchy
,
O.
,
Lvovsky
,
M.
,
Popovitz-Biro
,
R.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2003
, “
Tribological Properties of WS2 Nanoparticles Under Mixed Lubrication
,”
Wear
,
255
(
7–12
), pp.
785
793
.10.1016/S0043-1648(03)00044-9
20.
Sajith
, V
.
,
Mohiddeen
,
M.
,
Sajanish
,
M. B.
, and
Sobhan
,
C. B.
,
2007
, “
An Investigation of the Effect of Addition of Nanoparticles on the Properties of Lubricating Oil
,”
ASME Conf. Proc.
,
2
, pp.
329
335
.10.1115/HT2007-32772
21.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils with Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.10.1016/j.wear.2006.08.021
22.
Hernández Battez
,
A.
,
González
,
R.
,
Viesca
,
J. L.
,
Fernández
,
J. E.
,
Díaz
Fernández
,
J. M.
,
Machado
,
A.
,
Chou
,
R.
, and
Riba
,
J.
,
2008
, “
CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants
,”
Wear
,
265
(
3–4
), pp.
422
428
.10.1016/j.wear.2007.11.013
23.
Gu
,
C. X.
,
Zhu
,
G. J.
,
Li
,
L.
,
Tian
,
X. Y.
, and
Zhu
,
G. Y.
,
2009
, “
Tribological Effects of Oxide Based Nanoparticles in Lubricating Oils
,”
J. Mar. Sci. Appl.
,
8
(
1
), pp.
71
76
.10.1007/s11804-009-8008-1
24.
Zhang
,
M.
,
Wang
,
X.
,
Fu
,
X.
, and
Xia
,
Y.
,
2009
, “
Performance and Anti-Wear Mechanism of CaCO3 Nanoparticles as a Green Additive in Poly-Alpha-Olefin
,”
Tribol. Int.
,
42
(
7
), pp.
1029
1039
.10.1016/j.triboint.2009.02.012
25.
Zhang
,
M.
,
Wang
,
X.
,
Liu
,
W.
, and
Fu
,
X.
,
2009
, “
Performance and Anti-Wear Mechanism of Cu Nanoparticles as Lubricating Oil Additives
,”
Ind. Lubr. Tribol.
,
61
(
6
), pp.
311
318
.10.1108/00368790910988426
26.
Hernández Battez
,
A.
,
Viesca
,
J. L.
,
González
,
R.
,
Blanco
,
D.
,
Asedegbega
,
E.
, and
Osorio
,
A.
,
2010
, “
Friction Reduction Properties of a CuO Nanolubricant Used as Lubricant for a NiCrBSi Coating
,”
Wear
,
268
(
1–2
), pp.
325
328
.10.1016/j.wear.2009.08.018
27.
Tarasov
,
S.
,
Kolubaev
,
A.
,
Belyaev
,
S.
,
Lerner
,
M.
, and
Tepper
,
F.
,
2002
, “
Study of Friction Reduction by Nanocopper Additives to Motor Oil
,”
Wear
,
252
(
1–2
), pp.
63
69
.10.1016/S0043-1648(01)00860-2
28.
Zhao
,
Y.
,
Zhang
,
Z.
, and
Dang
,
H.
,
2003
, “
A Novel Solution Route for Preparing Indium Nanoparticles
,”
J. Phys. Chem. B
,
107
(
31
), pp.
7574
7576
.10.1021/jp027768l
29.
Greenberg
,
R.
,
Halperin
,
G.
,
Etsion
, I
.
, and
Tenne
,
R.
,
2004
, “
The Effect of WS 2 Nanoparticles on Friction Reduction in Various Lubrication Regimes
,”
Tribol. Lett.
,
17
(
2
), pp.
179
186
.10.1023/B:TRIL.0000032443.95697.1d
30.
Zhao
,
Y.
,
Zhang
,
Z.
, and
Dang
,
H.
,
2004
, “
Synthesis of In–Sn Alloy Nanoparticles by a Solution Dispersion Method
,”
J. Mater. Chem.
,
14
(
3
), pp.
299
302
.10.1039/b311611e
31.
Martin
,
J. M.
, and
Ohmae
,
N.
,
2008
,
Nanolubricants
,
Tribology Series, Wiley
,
New York
.
32.
Ghaednia
,
H.
,
Jackson
,
R. L.
, and
Khodadadi
,
J. M.
,
2013
, “
Experimental Analysis of Stable CuO Nanoparticle Enhanced Lubricants
,”
J. Exp. Nanosci.
, pp.
1
18
.10.1080/17458080.2013.778424
33.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1996
, “
Nano-Asperity Contact Analysis and Surface Optimization for Magnetic Head Slider/Disk Contact
,”
Wear
,
202
(
1
), pp.
83
98
.10.1016/S0043-1648(95)06902-X
34.
Adams
,
G. G.
,
Müftü
,
S.
, and
Azhar
,
N. M.
,
2003
, “
A Scale-Dependent Model for Multi-Asperity Contact and Friction
,”
ASME J. Tribol.
,
125
, pp.
700
708
.10.1115/1.1573232
35.
Adams
,
G. G.
, and
Muftu
,
S.
,
2005
, “
Improvements to a Scale-Dependent Model for Contact and Friction
,”
J. Phys. D: Appl. Phys.
,
38
(
9
), pp.
1402
1409
.10.1088/0022-3727/38/9/012
36.
Almeida
,
L.
,
Ramadoss
,
R.
,
Jackson
,
R.
,
Ishikawa
,
K.
, and
Yu
,
Q.
,
2007
, “
Laterally Actuated Multicontact Mems Relay Fabricated Using Metalmumps Process: Experimental Characterization and Multiscale Contact Modeling
,”
J. Micro/Nanolith. MEMS MOEMS
,
6
(
2
), p.
023009
.
37.
Bhushan
,
B.
, and
Nosonovsky
,
M.
,
2003
, “
Scale Effects in Friction Using Strain Gradient Plasticity and Dislocation-Assisted Sliding (Microslip)
,”
Acta Mater.
,
51
, pp.
4331
4345
.10.1016/S1359-6454(03)00261-1
38.
Jackson
,
R. L.
,
2006
, “
The Effect of Scale Dependant Hardness on Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
STLE Tribol. Trans.
,
49
(
2
), pp.
135
150
.10.1080/05698190500544254
39.
Jackson
,
R. L.
,
Bhavnani
,
S. H.
, and
Ferguson
,
T. P.
,
2008
, “
A Multi-Scale Model of Thermal Contact Resistance Between Rough Surfaces
,”
ASME J. Heat Transfer
,
130
, p.
081301
.10.1115/1.2927403
40.
Polonsky
, I
. A.
, and
Keer
,
L. M.
,
1996
, “
Scale Effects of Elastic-Plastic Behavior of Microscopic Asperity Contacts
,”
ASME J. Tribol.
,
118
, pp.
335
340
.10.1115/1.2831305
41.
Dareing
,
D. W.
, and
Khonsari
,
M.
,
1995
, “
Liquid Transported Powder Lubricant Study
,” Technical Report No. AD-A304 885/7.
42.
Hua
,
D. Y.
, and
Khonsari
,
M. M.
,
1996
, “
Elastohydrodynamic Lubrication by Powder Slurries
,”
ASME J. Tribol.
,
118
(
1
), pp.
67
73
.10.1115/1.2837094
43.
Khonsari
,
M. M.
,
1997
, “
On the Modeling of Multi-Body Interaction Problems in Tribology
,”
Wear
,
207
(
1–2
), pp.
55
62
.10.1016/S0043-1648(96)07483-2
44.
Trezona
,
R. I.
,
Allsopp
,
D. N.
, and
Hutchings
, I
. M.
,
1999
, “
Transitions Between Two-Body and Three-Body Abrasive Wear: Influence of Test Conditions in the Microscale Abrasive Wear Test
,”
Wear
,
225–229
, pp.
205
214
.10.1016/S0043-1648(98)00358-5
45.
Adachi
,
K.
, and
Hutchings
, I
. M.
,
2003
, “
Wear-Mode Mapping for the Micro-Scale Abrasion Test
,”
Wear
,
255
(
1–6
), pp.
23
29
.10.1016/S0043-1648(03)00073-5
46.
Stempfle
,
P.
,
Pantale
,
O.
,
Djilali
,
T.
,
Njiwa
,
R. K.
,
Bourrat
,
X.
, and
Takadoum
,
J.
,
2010
, “
Evaluation of the Real Contact Area in Three-Body Dry Friction by Micro-Thermal Analysis
,”
Tribol. Int.
,
43
(
10
), pp.
1794
1805
.10.1016/j.triboint.2009.12.001
47.
Clary
,
D. R.
, and
Mills
,
G.
,
2011
, “
Preparation and Thermal Properties of CuO Particles
,”
J. Phys. Chem. C
,
115
(
5
), pp.
1767
1775
.10.1021/jp110102r
48.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A.
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
49.
Jackson
,
R. L.
,
2010
, “
An Analytical Solution to an Archard-Type Fractal Rough Surface Contact Model
,”
Tribol. Trans.
,
53
(
4
), pp.
543
553
.10.1080/10402000903502261
50.
Jackson
,
R. L.
,
Malucci
,
R. D.
,
Angadi
,
S.
, and
Polchow
,
J. R.
,
2009
, “
A Simplified Model of Multiscale Electrical Contact Resistance and Comparison to Existing Closed Form Models
,”
Proceedings of the 55th IEEE Holm Conference on Electrical Contacts
, pp.
28
35
.
51.
Wadwalkar
,
S.
,
Jackson
,
R.
, and
Kogut
,
L.
,
2010
, “
A Study of the Elastic—Plastic Deformation of Heavily Deformed Spherical Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
224
(
10
), pp.
1091
1102
.10.1243/13506501JET763
52.
Ohmura
,
T.
,
Tsuzaki
,
K.
, and
Matsuoka
,
S.
,
2001
, “
Nanohardness Measurement of High-Purity Fe–C Martensite
,”
Scr. Mater.
,
45
(
8
), pp.
889
894
.10.1016/S1359-6462(01)01121-6
53.
Williams
,
J.
,
2005
,
Engineering Tribology
,
Cambridge University
,
Cambridge, UK
.
54.
Lahouij
, I
.
,
Dassenoy
,
F.
,
Vacher
,
B.
, and
Martin
,
J. M.
,
2012
, “
Real Time TEM Imaging of Compression and Shear of Single Fullerene-Like MoS2 Nanoparticle
,”
Tribol. Lett.
,
45
, pp.
131
141
.10.1007/s11249-011-9873-8
55.
Mishra
,
M.
, and
Szlufarska
, I
.
,
2012
, “
Analytical Model for Plowing Friction at Nanoscale
,”
Tribol. Lett.
,
45
, pp.
417
426
.10.1007/s11249-011-9899-y
56.
Greer
,
J. R.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Sub-Micron Scale
,”
Appl. Phys. A: Mater. Sci. Process.
,
80
(
8
), pp.
1625
1629
.10.1007/s00339-005-3204-6
57.
Greer
,
J. R.
,
Oliver
,
W. C.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients
,”
Acta Mater.
,
53
(
6
), pp.
1821
1830
.10.1016/j.actamat.2004.12.031
58.
Shan
,
Z. W.
,
Mishra
,
R. K.
,
Syed Asif
,
S. A.
,
Warren
,
O. L.
, and
Minor
,
A. M.
,
2008
, “
Mechanical Annealing and Source-Limited Deformation in Submicrometre-Diameter Ni Crystals
,”
Nature Mater.
,
7
(
2
), pp.
115
119
.10.1038/nmat2085
59.
Jackson
,
R. L.
, and
Green
, I
.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.10.1115/1.1866166
You do not currently have access to this content.