Contacts involving partial slip are commonly found at the interfaces formed by mechanical components. However, most theoretical investigations of partial slip are limited to homogeneous materials. This work proposes a novel and fast method for partial-slip contact involving a material with an inhomogeneity based on the equivalent inclusion method, where the inhomogeneity is replaced by an inclusion with properly chosen eigenstrains. The stress and displacement fields due to eigenstrains are formulated based on the half-space inclusion solutions recently derived by the authors and solved with a three-dimensional fast Fourier transform algorithm. The effectiveness and accuracy of the proposed method is demonstrated by comparing its solutions with those from the finite element method. The partial slip contact between an elastic ball and an elastic half space containing a cuboidal inhomogeneity is further investigated. A number of in-depth parametric studies are performed for the cuboidal inhomogeneity with different sizes and at different locations. The results reveal that the contact behavior of the inhomogeneous material is more strongly influenced by the inhomogeneity when it is closer to the contact center and when its size is larger.

References

1.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, UK
.
2.
Hills
,
D. A.
, and
Nowell
,
D.
,
1994
,
Mechanics of Fretting Fatigue
,
Kluwer
,
Boston
.
3.
Cattaneo
,
C.
,
1938
, “
Sul Contatto Di Due Corpi Elastici: Distribuzione Locale Degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
, pp.
342
348
, 434–436, 474–478.
4.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
.
5.
Lubkin
,
L.
,
1951
, “
The Torsion of Elastic Spheres in Contact
,”
ASME J. Appl. Mech.
,
18
, pp.
183
187
.
6.
Deresiewicz
,
H.
,
1954
, “
Contact of Elastic Spheres Under an Oscillating Torsional Couple
,”
ASME J. Appl. Mech.
,
21
, pp.
52
56
.
7.
Spence
,
D. A.
,
1968
, “
Self-Similar Solutions to Adhesive Contact Problems With Incremental Loading
,”
Proc. R. Soc. London, Ser. A
,
305
(
55
), pp.
55
80
.
8.
Spence
,
D. A.
,
1973
, “
Eigenvalue Problem for Elastic Contact With Finite Friction
,”
Proc. Cambridge Philos. Soc.
,
73
, pp.
249
268
.10.1017/S0305004100047666
9.
Nowell
,
D.
,
Hills
,
D. A.
, and
Sackfield
,
A.
,
1988
, “
Contact of Dissimilar Elastic Cylinders Under Normal and Tangential Loading
,”
J. Mech. Phys. Solids
,
36
(
1
), pp.
59
75
.10.1016/0022-5096(88)90020-8
10.
Nowell
,
D.
, and
Hills
,
D. A.
,
1988
, “
Contact Problems Incorporating Elastic Layers
,”
Int. J. Solids Struct.
,
24
(
1
), pp.
105
115
.10.1016/0020-7683(88)90102-3
11.
Xu
,
B. Q.
, and
Jiang
,
Y. Y.
,
2002
, “
Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact
,”
ASME J. Tribol.
,
124
(
1
), pp.
20
26
.10.1115/1.1395630
12.
Nikas
,
G. K.
, and
Sayles
,
R. S.
,
2009
, “
Surface Coatings and Finite-Element Analysis of Layered Fretting Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
223
(
2
), pp.
159
181
.10.1243/13506501JET441
13.
Kosior
,
F.
,
Guyot
,
N.
, and
Maurice
,
G.
,
1999
, “
Analysis of Frictional Contact Problem Using Boundary Element Method and Domain Decomposition Method
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
65
82
.10.1002/(SICI)1097-0207(19990910)46:1<65::AID-NME663>3.0.CO;2-F
14.
Guyot
,
N.
,
Kosior
,
F.
, and
Maurice
,
G.
,
2000
, “
Coupling of Finite Elements and Boundary Elements Methods for Study of the Frictional Contact Problem
,”
Comput. Methods Appl. Mech. Eng.
,
181
(
1–3
), pp.
147
159
.10.1016/S0045-7825(99)00122-X
15.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.10.1016/S0043-1648(00)00427-0
16.
Chen
,
W. W.
, and
Wang
,
Q.
,
2008
, “
A Numerical Model for the Point Contact of Dissimilar Materials Considering Tangential Tractions
,”
Mech. Mater.
,
40
(
11
), pp.
936
948
.10.1016/j.mechmat.2008.06.002
17.
Chen
,
W. W.
, and
Wang
,
Q.
,
2009
, “
A Numerical Static Friction Model for Spherical Contacts of Rough Surfaces, Influence of Load, Material, and Roughness
,”
ASME J. Tribol.
,
131
(
2
), p.
021402
.10.1115/1.3063814
18.
Wang
,
Z. J.
,
Wang
,
W. Z.
,
Wang
,
H.
,
Zhu
,
D.
, and
Hu
,
Y. Z.
,
2010
, “
Partial Slip Contact Analysis on Three-Dimensional Elastic Layered Half Space
,”
ASME J. Tribol.
,
132
(
2
), p.
021403
.10.1115/1.4001011
19.
Wang
,
Z. J.
,
Meng
,
F. M.
,
Xiao
,
K.
,
Wang
,
J. X.
, and
Wang
,
W.Z.
,
2011
, “
Numerical Analysis of Partial Slip Contact Under a Tangential Force and a Twisting Moment
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
225
(
2
), pp.
72
83
.
20.
Gallego
,
L.
, and
Nélias
,
D.
,
2007
, “
Modeling of Fretting Wear Under Gross Slip and Partial Slip Conditions
,”
ASME J. Tribol.
,
129
(
3
), pp.
528
535
.10.1115/1.2736436
21.
Gallego
,
L.
,
Nélias
,
D.
, and
Jacq
,
C.
,
2006
, “
A Comprehensive Method to Predict Wear and to Define the Optimum Geometry of Fretting Surfaces
,”
ASME J. Tribol.
,
128
(
3
), pp.
476
485
.10.1115/1.2194917
22.
Gallego
,
L.
,
Fulleringer
,
B.
,
Deyber
,
S.
, and
Nélias
,
D.
,
2010
, “
Multiscale Computation of Fretting Wear at the Blade/disk Interface
,”
Tribol. Int.
,
43
(
4
), pp.
708
718
.10.1016/j.triboint.2009.10.011
23.
Gallego
,
L.
,
Nélias
,
D.
, and
Deyber
,
S.
,
2010
, “
A Fast and Efficient Contact Algorithm for Fretting Problems Applied to Fretting Modes I II, and III
,”
Wear
,
268
(
1–2
), pp.
208
222
.10.1016/j.wear.2009.07.019
24.
Wang
,
Z. J.
,
Wang
,
W. Z.
,
Meng
,
F. M.
, and
Wang
,
J. X.
,
2011
, “
Fretting Contact Analysis on Three-Dimensional Elastic Layered Half Space
,”
ASME J. Tribol.
,
133
(
3
), p.
031401
.10.1115/1.4004104
25.
Varenberg
,
M. I.
,
Etsion
,
I.
, and
Halperin
,
G.
,
2004
, “
Slip Index: A New Unified Approach to Fretting
,”
Tribol. Lett.
,
17
(
3
), pp.
569
573
.10.1023/B:TRIL.0000044506.98760.f9
26.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
In Situ and Real Time Optical Investigation of Junction Growth in Spherical Elastic-Plastic Contact
,”
Wear
,
264
(
11–12
), pp.
1043
1050
.10.1016/j.wear.2007.08.009
27.
Etsion
,
I.
,
2010
, “
Revisiting the Cattaneo-Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies
,”
ASME J. Tribol.
,
132
(
2
), p.
020801
.10.1115/1.4001238
28.
Briscoe
,
B. J.
,
Chateauminois
,
A.
,
Lindley
,
T. C.
, and
Parsonagea
,
D.
,
1998
, “
Fretting Wear Behaviour of Polymethyl-Methacrylate Under Linear Motions and Torsional Contact Conditions
,”
Tribol. Int.
,
31
(
11
), pp.
701
711
.10.1016/S0301-679X(98)00093-0
29.
Cai
,
Z. B.
,
Zhu
,
M. H.
,
Zheng
,
J. F.
,
Jin
,
X. S.
, and
Zhou
,
Z. R.
,
2009
, “
Torsional Fretting Behaviors of LZ50 Steel in Air and Nitrogen
,”
Tribol. Int.
,
42
(
11–12
), pp.
1676
1683
.10.1016/j.triboint.2009.04.031
30.
Cai
,
Z. B.
,
Gao
,
S. S.
,
Zhu
,
M. H.
,
Lin
,
X. Z.
,
Liu
,
J.
, and
Yu
,
H. Y.
,
2011
, “
Tribological Behavior of Polymethyl Methacrylate Against Different Counter-Bodies Induced by Torsional Fretting Wear
,”
Wear
,
270
(
3–4
), pp.
230
240
.10.1016/j.wear.2010.10.063
31.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
,
376
396
.10.1098/rspa.1957.0133
32.
Mura
,
T.
,
1993
,
Micromechanics of Defects in Solids
, 2nd revised ed.,
Kluwer Academic
,
Dordrecht
.
33.
Leroux
,
J.
, and
Nélias
,
D.
,
2011
, “
Stick-Slip Analysis of a Circular Point Contact Between a Rigid Sphere and a Flat Unidirectional Composite With Cylindrical Fibers
,”
Int. J. Solids Struct.
,
48
(
25, 26
), pp.
3510
3520
.10.1016/j.ijsolstr.2011.09.007
34.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three-Dimensional Semi-Analytical Elastic–Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.10.1115/1.1467920
35.
Fulleringer
,
B.
, and
Nélias
,
D.
,
2010
, “
On the Tangential Displacement of a Surface Point Due to a Cuboid of Uniform Plastic Strain in a Half-Space
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021014
.10.1115/1.3197178
36.
Liu
,
S. B.
,
Jin
,
X. Q.
,
Wang
,
Z. J.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Analytical Solution for Elastic Fields Caused by Eigenstrains in a Half-Space and Numerical Implementation Based on FFT
,”
Int. J. Plast.
,
35
, pp.
135
154
.10.1016/j.ijplas.2012.03.002
37.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Zhou
,
Q. H.
,
Ai
,
X. L.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elasto-Plastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
.10.1115/1.4023948
38.
Chen
,
W. W.
,
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2010
, “
Modeling Elasto-Plastic Indentation on Layered Materials Using the Equivalent Inclusion Method
,”
Int. J. Solids Struct.
,
47
(
20
), pp.
2841
2854
.10.1016/j.ijsolstr.2010.06.011
39.
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2011
, “
Semi-analytic Solution for Multiple Interacting Three-Dimensional Inhomogeneous Inclusions of Arbitrary Shape in an Infinite Space
,”
Int. J. Numer. Methods Eng.
,
87
(
7
), pp.
617
638
.10.1002/nme.3117
40.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
(
3
), pp.
493
500
.10.1115/1.2833525
41.
Hu
,
Y. Z.
,
Barber
,
G. C.
, and
Zhu
,
D.
,
1999
, “
Numerical Analysis for the Elastic Contact of Real Rough Surfaces
,”
Tribol. Trans.
,
42
(
3
), pp.
443
452
.10.1080/10402009908982240
42.
Polonsky
, I
. A.
, and
Keer
,
L. M.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.10.1016/S0043-1648(99)00113-1
43.
Liu
,
S. B.
, and
Wang
,
Q.
,
2002
, “
Study Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
.10.1115/1.1401017
You do not currently have access to this content.