Debonding of the stem–cement interface occurs inevitably for almost all stem designs under physiological loading, and the wear debris generated at this interface is showing an increasing significance in contributing to the mechanical failure of cemented total hip replacements. However, the influence of protein adsorption onto the femoral stem and the bone cement surfaces has not been well taken into consideration across previous in vitro wear simulations. In the present study, the protein adsorption mechanism and biotribological properties at the stem-cement interface were investigated through a series of frictional tests using bone cements and femoral stems with two kinds of surface finishes, lubricated by calf serum at body temperature. The friction coefficient was dependent on the surface finish of the samples, with an initial much lower value obtained for the polished contacting pairs followed by a sudden increase in the friction coefficient with regard to the tests performed at higher frequencies. The friction coefficient did not change much during the tests for the glass-bead blasted contacting pairs. In addition, proteins from the calf serum were found to adsorb onto both the femoral stem and the bone cement surfaces, and the thickness of the physically adsorbed proteins on the polished metallic samples was more than 10 μm, which was measured using an optical interferometer and validated through a vertical scanning methodology based on Raman spectroscopy. An initial protein adsorption mechanism and biotribological properties at the stem-cement interface were examined in this study, and it suggested that wear at the stem-cement interface may be postponed or reduced by tailoring physicochemical properties of the femoral components to promote protein adsorption.

References

References
1.
Williams
,
H. D. W.
,
Browne
,
G.
,
Gie
,
G. A.
,
Ling
,
R.S.M.
,
Timperley
,
A. J.
, and
Wendover
,
N. A.
,
2002
, “
The Exeter Universal Cemented Femoral Component at 8 to 12 Years: A Study of the First 325 Hips
,”
J. Bone Jt. Surg. Br.
Vol.,
84
, pp.
324
334
.10.1302/0301-620X.84B3.12261
2.
Herberts
,
P.
, and
Malchau
,
H.
,
2000
, “
Long Term Registration has Improved the Quality of Hip Replacement: A Review of the Swedish THR Register Comparing 160,000 Cases
,”
Acta Orthop. Scand.
,
71
, pp.
111
121
.10.1080/000164700317413067
3.
Matsoukas
,
G.
, and
Yong
,
K.
, II.
,
2009
, “
Design Optimization of a Total Hip Prosthesis for Wear Reduction
,”
ASME J. Biomech. Eng.
,
131
, pp.
051003
.10.1115/1.3049862
4.
Zhang
,
H.
,
Blunt
,
L.
,
Jiang
,
X.
,
Brown
,
L.
,
Barrans
,
S.
, and
Zhao
,
Y.
,
2008
, “
Review Article: Femoral Stem Wear in Cemented Total Hip Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
, pp.
583
592
.10.1243/09544119JEIM346
5.
Zant
,
N. P.
,
Heaton-Adegbile
,
P.
,
Hussell
,
J. G.
, and
Tong
,
J.
,
2008
, “
In Vitro Fatigue Failure of Cemented Acetabular Replacements: A Hip Simulator Study
,”
ASME J. Biomech. Eng.
,
130
, pp.
021019
.10.1115/1.2904466
6.
Blunt
,
L.
,
Zhang
,
H.
,
Barrans
,
S.
,
Jiang
,
X.
, and
Brown
,
L.
,
2009
, “
What Results in Fretting Wear on Polished Femoral Stems
,”
Tribol. Int.
,
42
, pp.
1605
1614
.10.1016/j.triboint.2008.11.007
7.
Zhang
,
H.
,
Blunt
,
L.
,
Jiang
,
X.
,
Brown
,
L.
, and
Barrans
,
S.
,
2011
, “
The Significance of the Micropores at the Stem-Cement Interface in Total Hip Replacement
,”
J. Biomater. Sci., Polym. Ed.
,
22
, pp.
845
856
.10.1163/092050610X540495
8.
Verdonschot
,
N.
, and
Huiskes
,
R.
,
1997
, “
The Effects of Cement–Stem Debonding in THA on the Long Term Failure Probability of Cement
,”
J. Biomech.
,
30
, pp.
795
802
.10.1016/S0021-9290(97)00038-9
9.
Zhang
,
H.
,
Brown
,
L.
, and
Blunt
,
L.
,
2008
, “
Static Shear Strength Between Polished Stem and Seven Commercial Acrylic Bone Cements
,”
J. Mater. Sci. Mater. Med.
,
19
, pp.
591
599
.10.1007/s10856-007-3211-6
10.
Zhang
,
H.
,
Brown
,
L.
,
Blunt
,
L.
,
Jiang
,
X.
, and
Barrans
,
S.
,
2011
, “
The Contribution of the Micropores in Bone Cement Surface to Generation of Femoral Stem Wear in Total Hip Replacement
,”
Trib. Int.
,
44
, pp. 1476–1482.10.1016/j.triboint.2010.11.007
11.
Schmalzried
,
T. P.
,
Zahiri
,
C. A.
, and
Woolson
,
S. T.
,
2000
, “
The Significance of Stem–Cement Loosening of Grit-Blasted Femoral Components
,”
Orthopedics
,
23
, pp.
1157
1164
.
12.
Zhang
,
H.
,
Brown
,
L.
,
Blunt
,
L.
, and
Barrans
,
S.
,
2008
, “
Influence of Femoral Stem Surface Finish on the Apparent Static Shear Strength at the Stem-Cement iInterface
,”
J. Mech. Behav. Biomed. Mater
,
1
, pp.
96
104
.10.1016/j.jmbbm.2007.06.001
13.
Zhang
,
H.
,
Blunt
,
L.
,
Jiang
,
X.
,
Fleming
,
L.
, and
Barrans
,
S.
,
2012
, “
The Influence of Bone Cement Type on Production of Fretting Wear on the Femoral Stem Surface
,”
Clin. Biomech.
,
27
, pp. 666–672.10.1016/j.clinbiomech.2012.02.008
14.
Geringer
,
J.
,
Forest
,
B.
, and
Combrade
,
P.
,
2005
, “
Fretting-Corrosion of Materials Used as Orthopaedic Implants
,”
Wear
,
259
, pp.
943
951
.10.1016/j.wear.2004.11.027
15.
Alfaro-Adrian
,
J.
,
Gill
,
H. S.
, and
Murray
,
D. W.
,
2001
, “
Should Total Hip Arthroplasty Femoral Components be Designed to Subside?
J. Arthroplasty
,
16
, pp.
598
606
.10.1054/arth.2001.23576
16.
Widmer
,
M. R.
,
Heuberger
,
M.
,
Vörös
,
J.
, and
Spencer
,
N. D.
,
2001
, “
Influence of Polymer Surface Chemistry on Frictional Properties Under Protein-Lubrication Conditions: Implication for Hip Implant Design
,”
Tribol. Lett.
,
10
, pp.
111
116
.10.1023/A:1009074228662
17.
Scholes
,
S. C.
, and
Unsworth
,
A.
,
2006
, “
The Effect of Proteins on the Friction and Lubrication of Artificial Joints
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
220
, pp.
687
693
.10.1243/09544119JEIM21
18.
Serro
,
A. P.
,
Gispert
,
M. P.
,
Martins
,
M.C.L.
,
Brogueira
,
P.
,
Colaco
,
R.
, and
Saramago
,
B.
,
2006
, “
Adsorption of Albumin on Prosthetic Materials: Implication for Tribological Behaviour
,”
J. Biomed. Mater. Res., Part A
,
78
, pp.
581
589
.10.1002/jbm.a.30754
19.
Chen
,
X. M.
,
Jin
,
Z. M.
, and
Fisher
,
J.
,
2008
, “
Effect of Albumin Adsorption on Friction Between Artificial Joint Materials
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
222
, pp.
513
521
.10.1243/13506501JET371
20.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
O'connor
,
D. O.
,
Haire
,
T.
, and
Harris
,
W. H.
,
1991
, “
The Initiation of Failure in Cemented Femoral Components of Hip Arthroplasties
,”
J. Bone Jt. Surg. Br.
,
73
, pp.
551
558
.
21.
Cassin
,
G.
,
Heinrich
,
E.
, and
Spikes
,
H. A.
,
2001
, “
The Influence of Surface Roughness on the Lubrication Properties of Adsorbing and Non-Adsorbing Biopolymers
,”
Tribol. Lett.
,
11
, pp.
95
102
.10.1023/A:1016702906095
22.
Karuppiah
,
K. S. K.
,
Sundararajan
,
S.
,
Xu
,
Z. H.
, and
Li
,
X. D.
,
2006
, “
The Effect of Protein Adsorption on the Friction Behaviour of Ultra-High Molecular Weight Polyethylene
,”
Tribol. Lett.
,
22
, pp.
181
188
.10.1007/s11249-006-9078-8
23.
Mavraki
,
A.
, and
Cann
,
P. M.
,
2009
, “
Friction and Lubricant Film Thickness Measurements on Simulated Synovial Fluids
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
223
, pp.
325
335
.10.1243/13506501JET580
24.
Roba
,
M.
,
Naka
,
M.
,
Gautier
,
E.
,
Spencer
,
N. D.
, and
Crockett
,
R.
,
2009
, “
The Adsorption and Lubrication Behaviour of Synovial Fluid Proteins and Glycoproteins on the Bearing-Surface Materials of Hip Replacements
,”
Biomaterials
,
30
, pp.
2072
2078
.10.1016/j.biomaterials.2008.12.062
25.
Brown
,
L.
,
Zhang
,
H.
,
Blunt
,
L.
, and
Barrans
,
S.
,
2007
, “
Reproduction of Fretting Wear at the Stem-Cement Interface in Total Hip Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
221
, pp.
963
971
.10.1243/09544119JEIM333
26.
Zhang
,
H.
,
Brown
,
L.
,
Blunt
,
L.
,
Jiang
,
X.
, and
Barrans
,
S. M.
,
2009
, “
Understanding Initiation and Propagation of Fretting Wear on the Femoral Stem in Total Hip Replacement
,”
Wear
,
266
, pp.
566
569
.10.1016/j.wear.2008.04.076
27.
Zhang
,
H.
,
Brown
,
L.
,
Barrans
,
S. M.
,
Blunt
,
L.
, and
Jiang
,
X.
,
2009
, “
Investigation of Relative Micromotion at the Stem–Cement Interface in Total Hip Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
223
, pp.
955
964
.10.1243/09544119JEIM594
28.
Wen
,
S. Z.
, and
Huang
,
P.
,
Principles of Tribology
(
Wiley
,
New York
,
2011
).
29.
Norman
,
T. L.
,
Thyagarajan
,
G.
,
Saligrama
, V
.C.
,
Gruen
,
T. A.
, and
Blaha
,
J. D.
,
2001
, “
Stem Surface Roughness Alters Creep Induced Subsidence and ‘Taper-Lock’ in a Cemented Femoral Hip Prosthesis
,”
J. Biomech.
,
34
, pp.
1325
1333
.10.1016/S0021-9290(01)00085-9
30.
Zhang
,
H. Y.
,
Luo
,
J. B.
,
Zhou
,
M.
,
Zhang
,
Y.
, and
Huang
,
Y. L.
,
2013
, “
Biotribological Properties at the Stem-Cement Interface Lubricated with Different Media
,”
Journal of the Mechanical Behavior of Biomedical Materials
, in press.
31.
Brown
,
S. S.
, and
Clarke
, I
.C.
,
2006
, “
A Review of Lubrication Conditions for Wear Simulation in Artificial Hip Replacements
,”
Tribology Transactions
,
49
, pp.
72
78
.10.1080/05698190500519223
32.
Gispert
,
M. P.
,
Serro
,
A. P.
,
Colaco
,
R.
, and
Saramago
,
B.
,
2006
, “
Friction and Wear Mechanisms in Hip Prosthesis: Comparison of Joint Materials Behaviour in Several Lubricants
,”
Wear
,
260
, pp.
149
158
.10.1016/j.wear.2004.12.040
33.
Crockett
,
R.
,
Roba
,
M.
,
Naka
,
M.
,
Gasser
,
B.
,
Delfosse
,
D.
,
Frauchiger
, V
.
, and
Spencer
,
N. D.
,
2009
, “
Friction, Lubrication, and Polymer Transfer Between UHMWPE and CoCrMo Hip Implant Materials: A Fluorescence Microscopy Study
,”
J. Biomed. Mater. Res., Part A
,
89
, pp.
1011
1018
.10.1002/jbm.a.32036
34.
Nakanishi
,
K.
,
Sakiyyama
,
T.
, and
Imamura
,
K.
,
2001
, “
On the Adsorption of Proteins on Solid Surfaces, A Common but Very Complicated Phenomenon
,”
J. Biosci. Bioeng.
,
91
, pp.
233
244
.10.1263/jbb.91.233
35.
Hossain
,
M. M.
, and
Gao
,
W.
,
2008
, “
How is the Surface Treatments Influence on the Roughness of Biocompatibility?
Artif. Organs.
,
22
, pp.
144
157
.
36.
Pradier
,
C. M.
Costa
,
D.
,
Rubio
,
C.
,
Compere
,
C.
, and
Marcus
,
P.
,
2002
, “
Role of Salts on BSA Adsorption on Stainless Steel in Aqueous Solutions. I. FT-IRRAS and XPS Characterization
,”
Surf. Interface. Anal.
,
34
, pp.
50
54
.10.1002/sia.1250
37.
Haynes
,
C. A.
, and
Norde
,
W.
,
1994
, “
Globular Proteins at Solid/Liquid Interfaces
,”
Colloids Surf., B.
,
2
, pp.
517
566
.10.1016/0927-7765(94)80066-9
38.
Young
,
B. R.
,
Pitt
,
W. G.
, and
Copper
,
S. L.
,
1988
, “
Protein Adsorption on Polymeric Biomaterials. II. Adsorption Kinetics
,”
J. Colloid Interface. Sci.
,
125
, pp.
246
260
.10.1016/0021-9797(88)90073-2
39.
Malmsten
,
M.
,
1995
, “
Ellipsometry Studies of the Effects of Surface Hydrophobicity on Protein Adsorption
,”
Colloid. Surf., B.
,
3
, pp.
297
308
.10.1016/0927-7765(94)01139-V
You do not currently have access to this content.