This work takes place in the understanding of the friction and wear mechanisms occurring in reinforced phenolic materials, widely used in organic braking pads. As the matrix is filled with a large variety of particles, the phenomena in the contact zone are complex and multiphysic. In a first approach the reinforcement is restricted to spherical steel particles with diameters in the range of the fibbers size. The influence of the sliding speed, the mean normal pressure and the contact temperature are examined and the benefits of using this kind of particle is as well discussed. The tribological tests are performed on a newly developed High Speed Tribometer designed to reproduce braking conditions. The results show that temperature is the most influential parameter, leading to a decrease of the friction coefficient. They further indicate that reinforcement pushes the loss of efficiency to a higher temperature. Optical observations and profilometer analysis show that the wear mechanisms are clearly dependent on friction conditions. These results improve our knowledge of wear debris formation and conditions leading to particle debonding in phenolic matrix material.

References

References
1.
Thevenet
,
J.
,
Siroux
,
M.
, and
Desmet
,
B.
,
2010
, “
Measurements of Brake Disc Surface Temperature and Emissivity by Two-Color Pyrometry
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
753
759
.10.1016/j.applthermaleng.2009.12.005
2.
Cristol-bulthe
,
A.
,
Desplanques
,
Y.
,
Degallaix
,
G.
, and
Berthier
,
Y.
,
2008
, “
Mechanical and Chemical Investigation of the Temperature Influence on the Tribological Mechanisms Occurring in OMC/cast Iron Friction Contact
,”
Wear
,
264
(
9–10
), p.
815
825
.10.1016/j.wear.2006.12.080
3.
Mutlu
,
I.
,
Eldogan
,
O.
, and
Findik
,
F.
,
2006
, “
Tribological Properties of Some Phenolic Composites Suggested for Automotive Brakes
,”
Tribol. J.
,
39
(
4
), pp.
317
325
.10.1016/j.triboint.2005.02.002
4.
Bijwe
,
J.
,
Nidhi
,
D.
,
Majumdar
,
N.
, and
Satapathy
,
B.
,
2005
, “
Influence of Modified Phenolic Resins on the Fade and Recovery Behavior of Friction Materials
,”
Wear
,
259
(
7–12
), pp.
1068
1078
.10.1016/j.wear.2005.01.011
5.
Cho
,
M.
,
Ju
,
J.
,
Kim
,
S.
, and
Jang
,
H.
,
2006
, “
Tribological Properties of Solid Lubricants (graphite, Sb2S3, MoS2) for Automotive Brake Friction Materials
,”
Wear
,
260
(
7–8
), pp.
855
860
.10.1016/j.wear.2005.04.003
6.
Jang
,
H.
,
Ko
,
K.
,
Kim
,
S.
,
Basch
,
R.
, and
Fash
,
J.
,
2004
, “
The Effect of Metal Fibers on the Friction Performance of Automotive Brake Friction Materials
,”
Wear
,
256
(
3–4
), pp.
406
414
.10.1016/S0043-1648(03)00445-9
7.
Lu
,
Y.
,
2006
, “
A Combinatorial Approach for Automotive Friction Materials: Effects of Ingredients on Friction Performance
,”
Compos. Sci. Technol.
,
66
(
3–4
), p.
591
598
.10.1016/j.compscitech.2005.05.032
8.
Eriksson
,
M.
, and
Jacobson
,
S.
,
2000
, “
Tribological Surfaces of Organic Brake Pads
,”
Tribol. Int.
,
33
(
12
), pp.
817
827
.10.1016/S0301-679X(00)00127-4
9.
Ostermeyer
,
G.
,
2003
, “
On the Dynamics of the Friction Coefficient
,”
Wear
,
254
(
9
), pp.
852
858
.10.1016/S0043-1648(03)00235-7
10.
Berthier
,
Y.
,
Vincent
,
L.
, and
Godet
,
M.
,
1988
, “
Velocity Accommodation in Fretting
,”
Wear
,
125
(
1–2
), pp.
25
38
.10.1016/0043-1648(88)90191-3
11.
Roussette
,
O.
,
Desplanques
,
Y.
, and
Degallaix
,
G.
,
2003
, “
Thermal Representativity of Tribological Reduced-Scale Testing
,”
C.R. Mec.
,
331
(
5
), pp.
343
349
.10.1016/S1631-0721(03)00082-2
12.
Newcomb
,
T. P.
,
1959
, “
Transient Temperatures Attained in Disk Brakes
,”
Br. J. Appl. Phys.
,
10
(
7
), pp.
339
340
.10.1088/0508-3443/10/7/311
13.
Meresse
,
D.
,
Harmand
,
S.
,
Siroux
,
M.
,
Watremez
,
M.
, and
Dubar
,
L.
,
2012
. “
Experimental Disc Heat Flux Identification on a Reduced Scale Braking System Using the Inverse Heat Conduction Method
,”
Appl. Therm. Eng.
,
48
(
0
), pp.
202
210
.10.1016/j.applthermaleng.2012.04.033
14.
Beck
,
J.
, and
Blackwell
,
B.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
(
Wiley
,
New York
,
1985
).
15.
Meresse
,
D.
,
Siroux
,
M.
,
Watremez
,
M.
,
Dubar
,
L.
, and
Harmand
,
S.
,
2010
, “
Thermal Study of Pin on Disc Sliding Contact in Automotive Braking Conditions
,”
In JEF2010, 6th European Conference on Braking
.
16.
Symmons
,
G.
, and
Mcnulty
,
G.
,
1986
, “
Acoustic Output From Stick-Slip Friction
,”
Wear
,
113
(
1
), pp.
79
82
.10.1016/0043-1648(86)90057-8
17.
Persson
,
B.
,
2000
,
Sliding Friction: Physical Principles and Applications
,
Spinger-Verlag
,
Berlin
, pp.
45
91
.
18.
Gurunath
,
P.
, and
Bijwe
,
J.
,
2007
, “
Friction and Wear Studies on Brake-Pad Materials Based on Newly Developed Resin
,”
Wear
,
263
(
7–12
), pp.
1212
1219
.10.1016/j.wear.2006.12.050
19.
Boyer
,
H.
, and
Gall
,
T.
,
Metals Handbook
(
American Society for Metals
, Metal Parks, Ohio,
1985
).
20.
Shengzu
,
W.
,
Sabit
,
A.
, and
Bor
,
Z.
,
1997
, “
Mechanical and Thermo-Mechanical Failure Mechanism Analysis of Fiber/Filler Reinforced Phenolic Matrix Composites
,”
Composites, Part B
,
28
(
3
), pp.
215
231
.
21.
Meresse
,
D.
,
Siroux
,
M.
,
Watremez
,
M.
,
Harmand
,
S.
, and
Dubar
,
L.
,
2011
, “
Estimation of Three-Dimensional Distribution of Heat Flux on the Pin Frictional Surface During a Pin on Disc Test
,”
AIP Conf. Proc.
,
1353
(
1
), pp.
1137
1142
.10.1063/1.3589669
22.
Tan
,
H.
,
Liu
,
C.
,
Huang
,
Y.
, and
Geubelle
,
P.
,
2005
. “
The Cohesive Law for the Particle/Matrix Interfaces in High Explosives
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1892
1917
.10.1016/j.jmps.2005.01.009
You do not currently have access to this content.