This paper describes an efficient transient elastohydrodynamic simulation method for gear contacts. The model uses oil films and elastic deformations directly in the multibody simulation, and is based on the Reynolds equation including squeeze and wedge terms as well as an elastic half-space. Two transient solutions to this problem, an analytical and a numerical one, were developed. The analytical solution is accomplished using assumptions for the gap shape and the pressure in the middle of the gap. The numerical problem is solved using multilevel multi-integration algorithms. With this approach, tooth impacts during gear rattling as well as highly loaded power-transmitting gear contacts can be investigated and lubrication conditions like gap heights or type of friction may be determined. The method was implemented in the multibody simulation environment SIMPACK. Therefore it is easy to transfer the developed element to other models and use it for a multitude of different engineering problems. A detailed three-dimensional elastic multibody model of an experimental transmission is used to validate the developed method. Important values of the gear contact like normal and tangential forces, proportion of dry friction, and minimum gap heights are calculated and studied for different conditions. In addition, pressure distributions on tooth flanks as well as gap forms are determined based on the numerical solution method. Finally, the simulation approach is validated with measurements and shows good consistency. The simulation model is therefore capable of predicting transient gear contact under different operating conditions such as load vibrations or gear rattling. Simulations of complete transmissions are possible and therefore a direct determination of transmission vibration behavior and structure-borne noise as well as of forces and lubrication conditions can be done.

References

References
1.
Naunheimer
,
H.
,
Bertsche
,
B.
,
Ryborz
,
J.
, and
Novak
,
W.
,
2011
,
Automotive Transmissions
,
2nd ed.
,
Springer
,
Berlin
.
2.
Gerber
,
H.
,
1984
,
Innere Dynamische Zusatzkräfte bei Stirnradgetrieben
,
Dissertation
,
TU München
.
3.
Mauer
,
L.
,
2005
, “
Modelling and Simulation of Drive Line Gears
,”
SIMPACK News
,
9
(
1
), pp.
8
9
.
4.
Ajmi
,
M.
, and
Velex
,
P.
,
2005
, “
A Model for Simulating the Quasi-Static and Dynamic Behaviour of Solid Wide-Faced Spur and Helical Gears
,”
Mech. Mach. Theory
,
40
, pp.
173
190
.10.1016/j.mechmachtheory.2003.06.001
5.
Brecher
,
C.
,
Gorgels
,
C.
, and
Gacka
,
A.
,
2009
, “
Development of a Force Element for the Emulation of the Dynamic Behaviour of Bevel Gears
,”
Getriebe in Fahrzeugen 2009
,
VDI
,
Düsseldorf
, pp.
279
290
.
6.
Ziegler
,
P.
, and
Eberhard
,
P.
,
2008
, “
Simulative and Experimental Investigation of Impacts on Gear Wheels
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
51–52
), pp.
4653
4662
.10.1016/j.cma.2008.06.007
7.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication
,
Pergamon
,
London
.
8.
Lubrecht
,
A. A.
,
Venner
,
C. H.
, and
Colin
,
F.
,
2009
, “
Film Thickness Calculation in Elasto-Hydrodynamic Lubricated Line and Elliptical Contacts: The Dowson, Higginson, Hamrock Contribution
,”
Proc. Inst. Mech. Eng. Part J
,
223
, pp.
511
515
.
9.
Vichard
,
J. P.
,
1971
, “
Transient Effects in the Lubrication of Hertzian Contacts
,”
Proc. Inst. Mech. Eng. Part C
,
13
(
3
), pp.
173
189
.10.1243/JMES_JOUR_1971_013_030_02
10.
Gohar
,
R.
,
2001
,
Elastohydrodynamics
,
2nd ed.
,
Imperial College Press
,
London
.
11.
Wang
,
K. L.
, and
Cheng
,
H. S.
,
1981
, “
A Numerical Solution to the Dynamic Load, Film Thickness and Surface Temperatures in Spur Gears—Part I: Analysis
,”
J. Mech. Design
,
103
(
1
), pp.
177
187
.10.1115/1.3254859
12.
Wang
,
K. L.
, and
Cheng
,
H. S.
,
1981
, “
A Numerical Solution to the Dynamic Load, Film Thickness and Surface Temperatures in Spur Gears—Part II: Results
,”
J. Mech. Design
,
103
(
1
), pp.
188
194
.10.1115/1.3254860
13.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
Influence of Dynamic Behaviour on Elastohydrodynamic Lubrication of Spur Gears
,”
J. Eng. Tribol.
,
225
, pp.
740
753
.10.1177/1350650111409517
14.
Bartel
,
D.
,
Bobach
,
L.
,
Beilicke
,
R.
, and
Deters
,
L.
,
2010
, “
3D-TEHD-Simulation von mischreibungsbeanspruchten Tribosystemen-Anwendungsbeispiele Wälzlager und Zahnrad
,” GETLUB Tribologie- und Schmierstoffkongress 2010, Würzburg.
15.
Bobach
,
L.
,
Beilicke
,
R.
,
Bartel
,
D.
, and
Deters
,
L.
,
2010
, “
Simulation Thermo-elastohydrodynamischer Zahnflankenkontakte in Stirnradgetrieben
,” GfT Tribologie-Fachtagung. Göttingen, I, pp. 34/1–34/19.
16.
Wongrojn
,
M.
, and
Panichakorn
,
J.
,
2011
, “
TEHL Analysis of Rough Surface Spur Gears With Non-Newtonian Lubricants Under Impact Loads
,”
STLE Annual Meeting and Exhibition 2011
,
Atlanta, GA
, May 15–19.
17.
Lang
,
C.-H.
,
1997
, “
Losteilschwingungen in Fahrzeuggetrieben
,” Dissertation, University of Stuttgart.
18.
Weidner
,
G.
,
1991
, “
Klappern und Rasseln von Fahrzeuggetrieben
,” Dissertation, University of Stuttgart.
19.
Dogan
,
S. N.
,
Ryborz
,
J.
, and
Bertsche
,
B.
,
2003
, “
Rattling and Clattering Noise in Automotive Transmissions—Simulation of Drag Torque and Noise
,”
30th Lyon Symposium on Tribology
,
Lyon, France
, 2–5 September.
20.
Küçükay
F.
,
1987
,
Dynamik der Zahnradgetriebe: Modelle, Verfahren, Verhalten
,
Springer
,
Berlin
.
21.
Pfeiffer
,
F.
,
1996
, “
Rattling in Gears—A Review
,”
International Conference on Gears
, pp.
719
737
.
22.
Singh
,
R.
,
Xie
,
H.
, and
Comparin
,
R. J.
,
1989
, “
Analysis of Automotive Neutral Gear Rattle
,”
J. Sound Vib.
,
131
, pp.
177
196
.10.1016/0022-460X(89)90485-9
23.
Comparin
,
R. J.
, and
Singh
,
R.
,
1990
, “
An Analytical Study of Automotive Neutral Gear Rattle
,”
ASME J. Mech. Design
,
112
, pp.
237
245
.10.1115/1.2912598
24.
Wang
,
M. Y.
,
Zhao
,
W.
, and
Manoj
,
R.
,
2002
, “
Numerical Modelling and Analysis of Automotive Transmission Rattle
,”
J. Vib. Control
,
8
, pp.
921
943
.10.1177/10775402029594
25.
Bellomo
,
P.
,
Vito
,
N. de
,
Lang
,
C. H.
, and
Scamardi
,
L.
,
2002
, “
In Depth Study of Vehicle Powertrains to Identify Causes of Loose Components Rattle in Transmissions
,”
SAE 2002 World Congress
,
Detroit, MI
, pp.
103
120
.
26.
Baumann
,
A.
,
Fietkau
,
P.
,
Bertsche
,
B.
,
Böhnke
,
R.
,
Hagemann
,
K.
,
Krechberger
,
W.
, and
Zinßer
,
J.
,
2010
, “
Reduction of the Gear-Rattle Noise Level of Automotive Transmissions Using Innovative Gear Lubricants
,” Getriebe in Fahrzeugen 2010, VDI, Düsseldorf.
27.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2005
, “
A Gear Rattle Model Accounting for Oil Squeeze Between the Meshing Gear Teeth
,”
Proc. Inst. Mech. Eng. Part D
,
219
(
9
), pp.
1075
1083
.10.1243/095440705X34757
28.
Russo
,
R.
,
Brancati
,
R.
, and
Rocca
,
E.
,
2009
, “
Experimental Investigations About the Influence of Oil Lubricant Between Teeth on the Gear Rattle Phenomenon
,”
J. Sound Vib.
,
321
, pp.
647
661
.10.1016/j.jsv.2008.10.008
29.
Gnanakumarr
,
M.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2002
, “
The Tribo-Contact Dynamics Phenomenon in Torsional Impact of Loose Gears—Promoting Gear Rattle
,”
Proceedings of the 2002 SAE International Body Engineering Conference and Automotive & Transportation Technology Conference
,
Paris
, July 9–11.
30.
Theodossiades
,
S.
,
Tangasawi
,
O.
, and
Rahnejat
,
H.
,
2007
, “
Gear Teeth Impacts in Hydrodynamic Conjunctions Promoting Idle Gear Rattle
,”
J. Sound Vib.
,
303
, pp.
632
658
.10.1016/j.jsv.2007.01.034
31.
Tangasawi
,
O.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Kelly
,
P.
,
2008
, “
Non-Linear Vibro-Impact Phenomenon Belying Transmission Idle Rattle
,”
Proc. Inst. Mech. Eng. Part C
,
222
, pp.
1909
1923
.10.1243/09544062JMES922
32.
Rahnejat
,
H.
,
1984
, “
Influence of Vibration on the Oil Film in Concentrated Contacts
,” Ph.D. Thesis, Imperial College, University of London.
33.
De la Cruz
,
M.
,
Theodossiades
,
S.
,
King
,
P.
, and
Rahnejat
,
H.
,
2011
, “
Transmission Drive Rattle With Thermo-Elastohydrodynamic Impacts: Numerical and Experimental Investigations
,”
Int. J. Powertrains
1
(
2
), pp.
137
161
.10.1504/IJPT.2011.042764
34.
Mauer
,
L.
,
2004
, “
Gearwheels in SIMPACK
,”
SIMPACK News
,
8
(
1
), pp.
10
11
.
35.
Simpack
A. G.
,
2012
, “SIMPACK Documentation, Version 9.1,” Gilching.
36.
Ebrahimi
,
S.
,
2007
, “
A Contribution to Computational Contact Procedures in Flexible Multibody Systems
,” Dissertation, Institute of Engineering and Computational Mechanics, University of Stuttgart.
37.
International Organization for Standardization ISO 6336-1
,
1996
, “Calculation of Load Capacity of Spur and Helical Gears—Part 1: Basic Principles, Introduction and General Influence Factors,” Genf.
38.
Niemann
,
G.
, and
Winter
,
H.
,
2003
,
Maschinenelemente. Band 2: Getriebe allgemein, Zahnradgetriebe—Grundlagen, Stirnradgetriebe
,
2nd ed.
,
Springer
,
Berlin
.
39.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Spur Gear Mesh Interface Damping Model Based on Elastohydrodynamic Contact Behavior
,”
Int. J. Powertrains
,
1
(
1
), pp.
4
21
.10.1504/IJPT.2011.041907
40.
Johnson
,
K. L.
,
2003
,
Contact Mechanics
, 9th reprint of
1st ed.
,
Cambridge University Press
,
Cambridge
.
41.
Bartel
,
D.
,
2010
,
Simulation von Tribosystemen: Grundlagen und Anwendungen
,
Vieweg + Teubner Verlag/GWV Fachverlage GmbH
,
Wiesbaden
.
42.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier Science
,
Amsterdam
.
43.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
48
), pp.
625
633
.10.1243/PIME_PROC_1970_185_069_02
44.
Lagemann
, V
.
,
2000
, “
Numerische Verfahren zur tribologischen Charakterisierung bearbeitungsbedingter rauher Oberflächen bei Mikrohydrodynamik und Mischreibung
,” Dissertation, Institut für Maschinenelemente und Konstruktionstechnik, University of Kassel.
45.
Eyring
,
H.
,
1936
, “
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
,
4
(
4
), pp.
283
291
.10.1063/1.1749836
46.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
Trans. ASME Ser. F: J. Lubr. Technol.
,
100
, pp.
12
17
.10.1115/1.3453103
47.
Craig
,
R. R.
Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
48.
Sellgren
,
U.
,
2003
, “
Component Mode Synthesis. A Method for Efficient Dynamic Simulation of Complex Technical Systems
,” Technical Report, Department of Machine Design, The Royal Institute of Technology (KTH), Stockholm, Sweden.
49.
Dresig
,
H.
,
2006
,
Schwingungen und mechanische Antriebssysteme. Modelbildung, Berechnung, Analyse, Synthese
,
Springer
,
Berlin
.
50.
Weidemann
,
C.
,
2009
, “
SIMPACK Tips & Tricks Understanding Damping
,”
SIMPACK News
,
13
(
1
), p.
13
.
51.
Vesselinov
,
V.
,
Weber
,
J.
, and
Hahn
,
T.
,
2007
, “
Wälzlagerkennfelder für MKS-Programme
,”
Proceedings of the ATK
, W. Gold, Ed., 8–9 May,
Aachen
, pp.
213
223
.
52.
Fietkau
,
P.
,
Baumann
,
A.
, and
Bertsche
,
B.
,
2012
, “
Simulation of Passenger Car Synchronizer Ring Movement During Rattling
,”
Proc. Inst. Mech. Eng. Part K
,
226
(
1
), pp.
3
16
.
You do not currently have access to this content.