This paper presents the results of torsion fatigue of widely used bearing steels (through hardening with bainite, martensite heat treatments, and case hardened). An MTS torsion fatigue test rig (TFTR) was modified with custom mechanical grips and used to evaluate torsional fatigue life and failure mechanism of bearing steel specimen. Tests were conducted on the TFTR to determine the ultimate strength in shear (Sus) and stress cycle (S-N) results. Evaluation of the fatigue specimens in the high cycle regime indicates shear driven crack initiation followed by normal stress driven propagation, resulting in a helical crack pattern. A 3D finite element model was then developed to investigate fatigue damage in torsion specimen and replicate the observed fatigue failure mechanism for crack initiation and propagation. In the numerical model, continuum damage mechanics (CDM) were employed in a randomly generated 3D Voronoi tessellated mesh of the specimen to provide unstructured, nonplanar, interelement, and inter/transgranular paths for fatigue damage accumulation and crack evolution as observed in micrographs of specimen. Additionally, a new damage evolution procedure was implemented to capture the change in fatigue failure mechanism from shear to normal stress assisted crack growth. The progression of fatigue failure and the stress-life results obtained from the fatigue damage model are in good agreement with the experimental results. The fatigue damage model was also used to assess the influence of topological microstructure randomness accompanied by material inhomogeneity and defects on fatigue life dispersion.

References

References
1.
Akiniwa
,
Y.
,
Stanzl-Tschegg
,
S.
,
Mayer
,
H.
,
Wakita
,
M.
, and
Tanaka
,
K.
,
2008
, “
Fatigue Strength of Spring Steel Under Axial and Torsional Loading in the Very High Cycle Regime
,”
Int. J. Fatigue
,
30
(
12
), pp.
2057
2063
.10.1016/j.ijfatigue.2008.07.004
2.
Shamsaei
,
N.
, and
Fatemi
,
A.
,
2009
, “
Deformation and Fatigue Behaviors of Case-Hardened Steels in Torsion: Experiments and Predictions
,”
Int. J. Fatigue
,
31
(
8–9
), pp.
1386
1396
.10.1016/j.ijfatigue.2009.03.020
3.
McClaflin
,
D.
, and
Fatemi
,
A.
,
2004
, “
Torsional Deformation and Fatigue of Hardened Steel Including Mean Stress and Stress Gradient Effects
,”
Int. J. Fatigue
,
26
(
7
), pp.
773
784
.10.1016/j.ijfatigue.2003.10.019
4.
Withy
,
B.
,
James
,
A.
, and
Williams
,
J.
,
2012
, “
Rotational Torsion Fatigue Failure of an Engine Driven Fuel Pump Coupling
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
1
), pp.
37
44
.10.1111/j.1460-2695.2011.01614.x
5.
Matsunaga
,
H.
,
Shomura
,
N.
,
Muramoto
,
S.
, and
Endo
,
M.
,
2011
, “
Shear Mode Threshold for a Small Fatigue Crack in a Bearing Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
1
), pp.
72
82
.10.1111/j.1460-2695.2010.01495.x
6.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steels for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.10.1016/j.pmatsci.2011.06.002
7.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
8.
Littmann
,
W. E.
,
1969
, “
The Mechanism of Contact Fatigue
,”
Proceedings of the Symposium on Interdisciplinary Approach to the Lubrication of Concentrated Contacts
,
P. M.
Ku
, ed., NASA Special Report No. SP-237, pp.
309
378
.
9.
Bolotin
,
V. V.
, and
Belousov
,
I. L.
,
2001
, “
Early Fatigue Crack Growth as the Damage Accumulation Process
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
279
287
.10.1016/S0266-8920(01)00020-0
10.
Bolotin
,
V. V.
,
Babkin
,
A. A.
, and
Belousov
,
I. L.
,
1998
, “
Probabilistic Model of Early Fatigue Crack Growth
,”
Probab. Eng. Mech.
,
13
(
3
), pp.
227
232
.10.1016/S0266-8920(97)00029-5
11.
Suresh
,
S.
,
2004
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, UK
.
12.
Zhang
,
C.-C.
, and
Yao
,
W.-X.
,
2011
, “
An Improved Multiaxial High-Cycle Fatigue Criterion Based on Critical Plane Approach
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
5
), pp.
337
344
.10.1111/j.1460-2695.2010.01523.x
13.
Jiang
,
Y.
,
2000
, “
A Fatigue Criterion for General Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
1
), pp.
19
32
.10.1046/j.1460-2695.2000.00247.x
14.
Yang
,
F. P.
,
Yuan
,
X. G.
, and
Kuang
,
Z. B.
,
2012
, “
Influence of Loading Path on Fatigue Crack Growth Under Multiaxial Loading Condition
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
5
), pp.
425
432
.10.1111/j.1460-2695.2011.01633.x
15.
Murakami
,
Y.
,
Takahashi
,
K.
, and
Toyama
,
K.
,
2005
, “
Mechanism of Crack Path Morphology and Branching From Small Fatigue Cracks Under Mixed Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
1–2
), pp.
49
60
.10.1111/j.1460-2695.2004.00828.x
16.
Zhang
,
W.
, and
Akid
,
R.
,
1997
, “
Mechanisms and Fatigue Performance of Two Steels in Cyclic Torsion With Axial Static Tension/Compression
,”
Fatigue Fract. Eng. Mater. Struct.
,
20
(
4
), pp.
547
557
.10.1111/j.1460-2695.1997.tb00286.x
17.
Doquet
,
V.
,
1997
, “
Crack Initiation Mechanisms in Torsional Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
20
(
2
), pp.
227
235
.10.1111/j.1460-2695.1997.tb00280.x
18.
Marquis
,
G.
, and
Socie
,
D.
,
2000
, “
Long-Life Torsion Fatigue With Normal Mean Stresses
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
4
), pp.
293
300
.10.1046/j.1460-2695.2000.00291.x
19.
Sakanaka
,
N.
,
Matsubara
,
Y.
,
Shimamura
,
Y.
, and
Ishii
,
H.
,
2011
, “
Rapid Evaluation of Shear Fatigue Properties of Rolling Bearing Steels for Lifespans up to the Gigacycle Range
,”
NTN Tech. Rev.
, pp.
104
111
.
20.
Bayraktar
,
E.
,
Xue
,
H.
,
Ayari
,
F.
, and
Bathias
,
C.
,
2010
, “
Torsional Fatigue Behaviour and Damage Mechanisms in the Very High Cycle Regime
,”
Arch. Mater. Sci. Eng.
,
43
(
2
), pp.
77
87
.
21.
Shimizu
,
S.
,
Tsuchiya
,
K.
, and
Tosha
,
K.
,
2009
, “
Probabilistic Stress-Life (P-S-N) Study on Bearing Steel Using Alternating Torsion Life Test
,”
Tribol. Trans.
,
52
(
6
), pp.
807
816
.10.1080/10402000903125345
22.
Styri
,
H.
,
1951
, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,”
Proceedings of the American Society for Testing and Materials
, Vol.
51
, pp.
682
700
.
23.
Xue
,
H. Q.
,
Bayraktar
,
E.
,
Marines-Garcia
,
I.
, and
Bathias
,
C.
,
2008
, “
Torsional Fatigue Behaviour in Gigacycle Regime and Damage Mechanism of the Perlitic Steel
,”
J. Achiev. Mater. Manuf. Eng.
,
31
(
2
), pp.
391
398
.
24.
Li
,
H. F.
, and
Qian
,
C. F.
,
2012
, “
Path Prediction of I + III Mixed Mode Fatigue Crack Propagation
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
2
), pp.
185
190
.10.1111/j.1460-2695.2011.01605.x
25.
McDowell
,
D. L.
, and
Dunne
,
F. P. E.
,
2010
, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1521
1542
.10.1016/j.ijfatigue.2010.01.003
26.
Dunne
,
F.
, and
Petrinic
,
N.
,
2006
,
Introduction to Computational Plasticity
,
Oxford University Press
,
New York
.
27.
Chaboche
,
J. L.
,
1988
, “
Continuum Damage Mechanics: Part I—General Concepts
,”
J. Appl. Mech.
,
55
(
1
), pp.
59
64
.10.1115/1.3173661
28.
Rinaldi
,
A.
,
Peralta
,
P.
,
Krajcinovic
,
D.
, and
Lai
,
Y. C.
,
2006
, “
Prediction of Scatter in Fatigue Properties Using Discrete Damage Mechanics
,”
Int. J. Fatigue
,
28
(
9
), pp.
1069
1080
.10.1016/j.ijfatigue.2005.11.011
29.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
Trans. ASME, J. Tribol.
,
130
(
4
), p.
042201
.10.1115/1.2959109
30.
Raje
,
N.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2009
, “
A Discrete Damage Mechanics Model for High Cycle Fatigue in Polycrystalline Materials Subject to Rolling Contact
,”
Int. J. Fatigue
,
31
(
2
), pp.
346
360
.10.1016/j.ijfatigue.2008.08.006
31.
Warhadpande
,
A.
,
Jalalahmadi
,
B.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
A New Finite Element Fatigue Modeling Approach for Life Scatter in Tensile Steel Specimens
,”
Int. J. Fatigue
,
32
(
4
), pp.
685
697
.10.1016/j.ijfatigue.2009.10.003
32.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2012
, “
Three-Dimensional Modelling of Intergranular Fatigue Failure of Fine Grain Polycrystalline Metallic MEMS Devices
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
, pp.
1007
1021
.10.1111/j.1460-2695.2012.01689.x
33.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Wang
,
C.-P.
, and
Sadeghi
,
F.
,
2012
, “
Experimental and Numerical Investigation of Fatigue of Thin Tensile Specimen
,”
Int. J. Fatigue
,
44
, pp.
116
130
.10.1016/j.ijfatigue.2012.05.013
34.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2013
, “
Numerical Modeling of Sub-Surface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
59
, pp.
210
221
.10.1016/j.triboint.2012.03.006
35.
Przybyla
,
C. P.
, and
McDowell
,
D. L.
,
2010
, “
Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100
,”
Int. J. Plast.
,
26
(
3
), pp.
372
394
.10.1016/j.ijplas.2009.08.001
36.
Okabe
,
A.
,
Boots
,
B.
,
Sugihara
,
K.
, and
Chiu
,
S. N.
,
2000
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
Wiley
,
New York
.
37.
Mucklich
,
F.
,
Ohser
,
J.
, and
Schneider
,
G.
,
1997
, “
The Characterization of Homogeneous Polyhedral Microstructures Applying the Spatial Poisson-Voronoi Tesselation Compared to the Standard DIN 50601
,”
Z. Metallkd.
,
88
(
1
), pp.
27
32
.
38.
Kamaya
,
M.
, and
Itakura
,
M.
,
2009
, “
Simulation for Intergranular Stress Corrosion Cracking Based on a Three-Dimensional Polycrystalline Model
,”
Eng. Fract. Mech.
,
76
(
3
), pp.
386
401
.10.1016/j.engfracmech.2008.11.004
39.
Weinzapfel
,
N.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2010
, “
An Approach for Modeling Material Grain Structure in Investigations of Hertzian Subsurface Stresses and Rolling Contact Fatigue
,”
Trans. ASME J. Tribol.
,
132
(
4
), p.
041404
.10.1115/1.4002521
40.
Lemaître
,
J.
,
1992
,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin
.
41.
Xiao
,
Y. C.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.10.1016/S0142-1123(98)00005-X
42.
Boroch
,
R.
,
Wiaranowski
,
J.
,
Mueller-Fiedler
,
R.
,
Ebert
,
M.
, and
Bagdahn
,
J.
,
2007
, “
Characterization of Strength Properties of Thin Polycrystalline Silicon Films for MEMS Applications
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
1
), pp.
2
12
.10.1111/j.1460-2695.2006.01055.x
43.
Altus
,
E.
,
2001
, “
Statistical Modeling of Heterogeneous Micro-Beams
,”
Int. J. Solids Struct.
,
38
(
34–35
), pp.
5915
5934
.10.1016/S0020-7683(00)00385-1
44.
Grandt
,
A. F.
,
2004
,
Fundamentals of Structural Integrity: Damage Tolerant Design and Nondestructive Evaluation
,
Wiley
,
New York
.
45.
Schijve
,
J.
,
2009
, “
Fatigue Damage in Aircraft Structures, not Wanted, but Tolerated?
,”
Int. J. Fatigue
,
31
(
6
), pp.
998
1011
.10.1016/j.ijfatigue.2008.05.016
You do not currently have access to this content.