Preclinical wear evaluation is extremely important in hip replacements, wear being one of the main causes of failure. Experimental tests are attractive but highly cost demanding; thus predictive models have been proposed in the literature, mainly based on finite element simulations. In such simulations, the effect of friction is usually disregarded, as it is considered not to affect the contact pressure distribution. However, a frictional contact could also result in a shift of the location of the nominal contact area, which can thus modify the wear maps. The aim of this study is to investigate this effect in wear prediction for metal-on-metal implants. Wear assessment was based on a purpose-developed mathematical model, extension of a previous one proposed by the same authors for metal-on-plastic implants. The innovative aspect of the present study consists in the implementation of a modified location of the nominal contact point due to friction, which takes advantage of the analytical formulation of the wear model. Simulations were carried out aimed at comparing total and resurfacing hip replacements under several gait conditions. The results highlighted that the adoption of a frictional contact yields lower linear wear rates and wider worn areas, while for the adopted friction coefficient (f=0.2), the total wear volume remains almost unchanged. The comparison between total and resurfacing replacements showed higher scaled wear volumes (wear volume divided by wear factor) for the latter, in agreement with the literature. The effect of the boundary conditions (in vivo versus in vitro) was also investigated remarking their influence on implant wear and the need to apply more physiological-like conditions in hip simulators. In conclusion although friction is usually neglected in numerical wear predictions, as it does not affect markedly the contact pressure distribution, its effect in the location of the theoretical contact point was observed to influence wear maps. This achievement could be useful for increasing the correlation between numerical and experimental simulations, usually based on the total wear volume. In order to improve the model reliability, future studies will be devoted to implement the geometry update by combining the present model to finite element analyses. On the other hand, further experimental investigations are required to get out from the wide dispersion of wear factors reported in the literature.

References

References
1.
Marker
,
D. R.
,
Strimbu
,
K.
,
McGrath
,
M. S.
,
Zywiel
,
M. G.
, and
Mont
,
M. A.
,
2009
, “
Resurfacing Versus Conventional Total Hip Arthroplasty—Review of Comparative Clinical and Basic Science Studies
,”
Bull. NYU Hospital Joint Disease
,
67
(
2
), pp.
120
127
.
2.
Joyce
,
T. J.
,
Langton
,
D. J.
,
Jameson
,
S. S.
, and
Nargol
,
A. V. F.
,
2009
, “
Tribological Analysis of Failed Resurfacing Hip Prostheses and Comparison With Clinical Data
,”
Proc. Inst. Mech. Eng. Part J
,
223
(
3
), pp.
317
323
.10.1243/13506501JET484
3.
Ollivere
,
B.
,
Darrah
,
C.
,
Barker
,
T.
,
Nolan
,
J.
, and
Porteous
,
M. J.
,
2009
, “
Early Clinical Failure of the Birmingham Metal-on-Metal Hip Resurfacing Is Associated With Metallosis and Soft-Tissue Necrosis
,”
J. Bone Joint Surg. Br. Vol.
,
91-B
(
8
), pp.
1025
1030
.10.1302/0301-620X.91B8.21701
4.
Pandit
,
H.
,
Glyn-Jones
,
S.
,
McLardy-Smith
,
P.
,
Gundle
,
R.
,
Whitwell
,
D.
,
Gibbons
,
C. L. M.
,
Ostlere
,
S.
,
Athanasou
,
N.
,
Gill
,
H. S.
, and
Murray
,
D. W.
,
2008
, “
Pseudotumours Associated With Metal-on-Metal Hip Resurfacings
,”
J. Bone Joint Surg. Br. Vol.
,
90
-B(
7
), pp.
847
851
.10.1302/0301-620X.90B7.20213
5.
Langton
,
D. J.
,
Jameson
,
S. S.
,
Joyce
,
T. J.
,
Webb
,
J.
, and
Nargol
,
A. V. F.
,
2008
, “
The Effect of Component Size and Orientation on the Concentrations of Metal Ions After Resurfacing Arthroplasty of the Hip
,”
J. Bone Joint Surg. Br.
Vol.,
90-B
(
9
), pp.
1143
1151
.10.1302/0301-620X.90B9.20785
6.
Barnes
,
C. L.
,
DeBoer
,
D.
,
Corpe
,
R. S.
,
Nambu
,
S.
,
Carroll
,
M.
, and
Timmerman
,
I.
,
2008
, “
Wear Performance of Large-Diameter Differential-Hardness Hip Bearings
,”
J. Arthroplasty
,
23
(
6, Suppl.
), pp.
56
60
.10.1016/j.arth.2008.05.021
7.
Witzleb
,
W.-C.
,
Hanisch
,
U.
,
Ziegler
,
J.
, and
Guenther
,
K.-P.
,
2009
, “
In Vivo Wear Rate of the Birmingham Hip Resurfacing Arthroplasty: A Review of 10 Retrieved Components
,”
J. Arthroplasty
,
24
(
6
), pp.
951
956
.10.1016/j.arth.2008.06.022
8.
Cosmi
,
P.
,
Hoglievina
,
M.
,
Fancellu
,
G.
, and
Martinelli
,
B.
,
2006
, “
A Finite Element Method Comparison of Wear in Two Metal-on-Metal Total Hip Prostheses
,”
Proc. Inst. Mech. Eng. Part H
,
220
(
8
), pp.
871
879
.10.1243/09544119JEIM148
9.
Liu
,
F.
,
Leslie
,
I.
,
Williams
,
S.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2008
, “
Development of Computational Wear Simulation of Metal-on-Metal Hip Resurfacing Replacements
,”
J. Biomech.
,
41
(
3
), pp.
686
694
.10.1016/j.jbiomech.2007.09.020
10.
Harun
,
M. N.
,
Wang
,
F. C.
,
Jin
,
Z. M.
, and
Fisher
,
J.
,
2009
, “
Long-Term Contact-Coupled Wear Prediction for Metal-on-Metal Total Hip Joint Replacement
,”
Proc. Inst. Mech. Eng. Part J
,
223
(
7
), pp.
993
1001
.10.1243/13506501JET592
11.
Liu
,
F.
,
Jin
,
Z. M.
,
Grigoris
,
P.
,
Hirt
,
F.
, and
Rieker
,
C.
,
2003
, “
Contact Mechanics of Metal-on-Metal Hip Implants Employing a Metallic Cup With a Uhmwpe Backing
,”
Proc. Inst. Mech. Eng. Part H
,
217
(
3
), pp.
207
213
.10.1243/095441103765212703
12.
Udofia
,
I. J.
,
Yew
,
A.
, and
Jin
,
Z. M.
,
2004
, “
Contact Mechanics Analysis of Metal-on-Metal Hip Resurfacing Prostheses
,”
Proc. Inst. Mech. Eng. Part H
,
218
(
5
), pp.
293
305
.10.1243/0954411041932854
13.
Teoh
,
S. H.
,
Chan
,
W. H.
, and
Thampuran
,
R.
,
2002
, “
An Elasto-Plastic Finite Element Model for Polyethylene Wear in Total Hip Arthroplasty
,”
J. Biomech.
,
35
(
3
), pp.
323
330
.10.1016/S0021-9290(01)00215-9
14.
Jourdan
,
F.
, and
Samida
,
A.
,
2009
, “
An Implicit Numerical Method for Wear Modeling Applied to a Hip Joint Prosthesis Problem
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
27–29
), pp.
2209
2217
.10.1016/j.cma.2009.02.017
15.
Mattei
,
L.
,
Di Puccio
,
F.
, and
Ciulli
,
E.
,
2012
, “
A Comparative Study on Wear Laws for Soft-on-Hard Hip Implants Using a Mathematical Wear Model
,”
Tribol. Int.
(in press).10.1016/j.triboint.2012.03.002
16.
Mattei
,
L.
,
Di Puccio
,
F.
, and
Ciulli
,
E.
,
2012
, “
Wear Simulation of Metal on Metal Hip Replacements: An Analytical Approach
,”
11th Conference on Engineering Systems Design and Analysis, ESDA, I. ASME, CD-ROM
, pp.
1
10
.
17.
Buford
,
A.
, and
Goswami
,
T.
,
2004
, “
Review of Wear Mechanisms in Hip Implants: Paper I—General
,”
Mater. Design
,
25
(
5
), pp.
385
393
.10.1016/j.matdes.2003.11.010
18.
Maxian
,
T.
,
Brown
,
T.
,
Pedersen
,
D.
, and
Callaghan
,
J.
,
1996
, “
3-Dimensional Sliding-Contact Computational Simulation of Total Hip Wear
,”
Clin. Orthopaed. Relat. Res.
,
333
, pp.
41
50
.
19.
Dowson
,
D.
,
Hardaker
,
C.
,
Flett
,
M.
, and
Isaac
,
G. H.
,
2004
, “
A Hip Joint Simulator Study of the Performance of Metal-on-Metal Joints: Part I: The Role of Materials
,”
J. Arthroplasty
,
19
(
8, Suppl.
), pp.
118
123
.
20.
Dowson
,
D.
,
Hardaker
,
C.
,
Flett
,
M.
, and
Isaac
,
G. H.
,
2004
, “
A Hip Joint Simulator Study of the Performance of Metal-on-Metal Joints: Part II: Design
,”
J. Arthroplasty
,
19
(
8, Suppl.
), pp.
124
130
.
21.
Chan
,
F. W.
,
Bobyn
,
J. D.
,
Medley
,
J. B.
,
Krygier
,
J. J.
, and
Tanzer
,
M.
,
1999
, “
The Otto Aufranc Award. Wear And Lubrication of Metal-on-Metal Hip Implants
,”
Clin. Orthopaed. Relat. Res.
,
369
, pp.
10
24
.10.1097/00003086-199912000-00003
22.
Dowson
,
D.
,
2001
, “
New Joints for the Millennium: Wear Control in Total Replacement Hip Joints
,”
Proc. Inst. Mech. Eng. Part H
,
215
(
4
), pp.
335
358
.10.1243/0954411011535939
23.
Chan
,
F. W.
,
Bobyn
,
J. D.
,
Medley
,
J. B.
,
Krygier
,
J. J.
,
Yue
,
S.
, and
Tanzer
,
M.
,
1996
, “
Engineering Issues and Wear Performance of Metal on Metal Hip Implants
,”
Clin. Orthopaed. Relat. Res.
,
333
, pp.
96
107
.10.1097/00003086-199612000-00009
24.
Brockett
,
C. L.
,
2007
, “
A Comparison of Friction in 28 mm Conventional and 55 mm Resurfacing Metal-on-Metal Hip Replacements
,”
Proc. Inst. Mech. Eng. Part J
,
221
(
3
), pp.
391
398
.
25.
Bishop
,
N. E.
,
Waldow
,
F.
, and
Morlock
,
M. M.
,
2008
, “
Friction Moments of Large Metal-on-Metal Hip Joint Bearings and Other Modern Designs
,”
Med. Eng. Phys.
,
30
(
8
), pp.
1057
1064
.10.1016/j.medengphy.2008.01.001
26.
Flanagan
,
S.
,
2010
, “
In Vitro Friction and Lubrication of Large Bearing Hip Prostheses
,”
Proc. Inst. Mech. Eng. Part H
,
224
(
7
), pp.
853
864
.10.1243/09544119JEIM733
27.
Williams
,
S.
,
Jalali-Vahid
,
D.
,
Brockett
,
C.
,
Jin
,
Z.
,
Stone
,
M. H.
,
Ingham
,
E.
, and
Fisher
,
J.
,
2006
, “
Effect of Swing Phase Load on Metal-on-Metal Hip Lubrication, Friction and Wear
,”
J. Biomech.
,
39
(
12
), pp.
2274
2281
.10.1016/j.jbiomech.2005.07.011
28.
Scholes
,
S. C.
, and
Unsworth
,
A.
,
2000
, “
Comparison of Friction and Lubrication of Different Hip Prostheses
,”
Proc. Inst. Mech. Eng. Part H
,
214
(
1
), pp.
49
57
.10.1243/0954411001535237
29.
Damm
,
P.
,
Ackermann
,
R.
,
Bender
,
A.
,
Graichen
,
F.
, and
Bergmann
,
G.
,
2012
, “
In Vivo Measurements of the Friction Moment in Total Hip Joint Prosthesis During Walking
,”
J. Biomech.
,
45
, Suppl. 1, p.
S268
.10.1016/S0021-9290(12)70269-5
30.
Leslie
,
I.
,
Williams
,
C.
,
Brown
,
C.
,
Thompson
,
J.
,
Isaac
,
G. H.
,
Ingham
,
E.
, and
Fisher
,
J.
,
2007
, “
Effect of Bearing Size on Wear, Wear Debris and Ion Levels of Surfaces Replacements
,”
Trans. Orthorpaed. Res. Soc.
,
32
,
p. 1707
.
31.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
32.
Shin
,
Y. J.
, and
Kim
,
C. H.
,
1991
, “
An Analytical Solution for Spherical Joint Mechanism Including Coulomb Friction
,”
International Pacific Conference on Automotive Engineering
,
Seoul, Korea
, pp.
383
389
.
33.
Faraz
,
A.
, and
Payandeh
,
S.
,
2001
, “
Towards Approximate Models of Coulomb Frictional Moments in: (I) Revolute Pin Joints and (II) Spherical-Socket Ball Joints
,”
J. Eng. Math.
,
40
(
3
), pp.
283
296
.10.1023/A:1017545030199
34.
Raimondi
,
M. T.
,
Santambrogio
,
C.
,
Pietrabissa
,
R.
,
Raffelini
,
F.
, and
Molfetta
,
L.
,
2001
, “
Improved Mathematical Model of the Wear of the Cup Articular Surface in Hip Joint Prostheses and Comparison With Retrieved Components
,”
Proc. Inst. Mech. Eng. Part H
,
215
(
4
), pp.
377
391
.10.1243/0954411011535966
35.
Calonius
,
O.
, and
Saikko
,
V.
,
2002
, “
Slide Track Analysis of Eight Contemporary Hip Simulator Designs
,”
J. Biomech.
,
35
(
11
), pp.
1439
1450
.10.1016/S0021-9290(02)00171-9
36.
Firkins
,
P.
,
Tipper
,
J. L.
,
Saadatzadeh
,
M. R.
,
Ingham
,
E.
,
Stone
,
M. H.
,
Farrar
,
R.
, and
Fisher
,
J.
,
2001
, “
Quantitative Analysis of Wear and Wear Debris From Metal-on-Metal Hip Prostheses Tested in a Physiological Hip Joint Simulator
,”
Bio-Med. Mater. Eng.
,
11
(
2
),
143
157
.
37.
Essner
,
A.
,
Sutton
,
K.
, and
Wang
,
A.
,
2005
, “
Hip Simulator Wear Comparison of Metal-on-Metal, Ceramic-on-Ceramic and Crosslinked Uhmwpe Bearings
,”
Wear
,
259
(
7–12
), pp.
992
995
.10.1016/j.wear.2005.02.104
38.
Scholes
,
S. C.
,
Green
,
S. M.
, and
Unsworth
,
A.
,
2001
, “
The Wear of Metal-on-Metal Total Hip Prostheses Measured in a Hip Simulator
,”
Proc. Inst. Mech. Eng. Part H
,
215
, pp.
523
530
.10.1243/0954411011536118
39.
Anissian
,
H. L.
,
Stark
,
A.
,
Good
,
V.
,
Dahlstrand
,
H.
, and
Clarke
,
I. C.
,
2001
, “
The Wear Pattern in Metal-on-Metal Hip Prostheses
,”
J. Biomed. Mater. Res.
,
58
(
6
), pp.
673
678
.10.1002/jbm.1068
40.
Sieber
,
H. P.
,
Rieker
,
C. B.
, and
Kottig
,
P.
,
1999
, “
Analysis of 118 Second-Generation Metal-on-Metal Retrieved Hip Implants
,”
J. Bone Joint Surg. Br. Vol.
,
81-B
(
1
), pp.
46
50
.10.1302/0301-620X.81B1.9047
41.
Reinisch
,
G.
,
Judmann
,
K. P.
,
Lhotka
,
C.
,
Lintner
,
F.
, and
Zweymüller
,
K. A.
,
2003
, “
Retrieval Study of Uncemented Metalâmetal Hip Prostheses Revised for Early Loosening
,”
Biomaterials
,
24
(
6
), pp.
1081
1091
.10.1016/S0142-9612(02)00410-6
42.
Heisel
,
C.
,
Streich
,
N.
,
Krachler
,
M.
,
Jakubowitz
,
E.
, and
Kretzer
,
J. P.
,
2008
, “
Characterization of the Running-in Period in Total Hip Resurfacing Arthroplasty: An In Vivo and In Vitro Metal Ion Analysis
,”
J. Bone Joint Surg.
,
90
(
3
), pp.
125
133
.10.2106/JBJS.H.00437
43.
Vassiliou
,
K.
,
Elfick
,
A. P. D.
,
Scholes
,
S. C.
, and
Unsworth
,
A.
,
2006
, “
The Effect of ‘Running-in’ on the Tribology and Surface Morphology of Metal-on-Metal Birmingham Hip Resurfacing Device in Simulator Studies
,”
Proc. Inst. Mech. Eng. Part H
,
220
(
2
), pp.
269
277
.10.1243/09544119JEIM63
44.
Morlock
,
M.
,
Bishop
,
N.
,
Zustin
,
J.
,
Hahn
,
M.
,
Ruther
,
W.
, and
Amling
,
M.
,
2008
, “
Modes of Implant Failure After Hip Resurfacing: Morphological and Wear Analysis of 267 Retrieval Specimens
,”
J. Bone Joint Surg.
,
90
(
3
), pp.
89
95
.10.2106/JBJS.H.00621
You do not currently have access to this content.