Novel Al-6061 hybrid composite materials with varying range of SiC particulate and constant weight percentage of B4C particulate and 1% of magnesium alloy were fabricated by the stir casting technique (liquid metallurgy route). The mechanical and tribological properties of the hybrid composites and that of Al-6061 unreinforced alloy were examined by a Rockwell hardness test machine, pin-on-disc test machine, and Optical Microscope and Scanning Electron Microscope (SEM). A plan of experiment generated through Taguchi's technique was used to conduct experiments based on the L27 orthogonal array. The developed analysis of variance (ANOVA) and the regression equations were used to investigate the influence of parameters like sliding speed, applied load, sliding time, and percentage of reinforcement and their interactions on the dry sliding wear and friction coefficient of the composites. The motto of the present study is ‘the smaller the better’ to identify the optimum conditions for dry sliding wear and the friction coefficient. The results indicate that wear rate and friction coefficient were highly influenced by applied load, sliding speed, percentage of reinforcement and sliding time whereas the interaction between these parameters show only a minor influence in Hybrid Metal Matrix Composites (HMMCs). The wear surface morphology and wear mechanism of the pins were investigated using SEM and were correlated with wear test results. Finally, confirmation tests were carried out to verify the experimental results. It is concluded that Al-6061 hybrid composite can replace the conventional material used in the brake disc of automobiles owing to improved hardness and strength and reduced wear rate.

References

References
1.
Sanjay
,
K. T.
, and
Brij
,
K. D.
,
2001
, “
The Influence of Interfacial Characteristics Between Sicp and Mg/Al Metal Matrix on Wear, Coefficient of Friction and Microhardness
,”
Wear
,
247
, pp.
191
201
.10.1016/S0043-1648(00)00536-6
2.
Natarajan
,
N.
,
Vijayarangan
,
S.
, and
Rajendran
,
I.
,
2007
, “
Fabrication Testing and Thermal Analysis of Metal Matrix Composite Brake Drum
,”
Int. J. Veh. Des.
,
44
(
3–4
), pp.
339
359
.10.1504/IJVD.2007.013648
3.
Prasad
,
S. V.
, and
Asthana
,
R.
,
2004
, “
Aluminium-Metal Matrix Composites for Automotive Applications: Tribological Considerations
,”
Tribol. Lett.
,
17
(
3
), pp.
445
453
.10.1023/B:TRIL.0000044492.91991.f3
4.
Sharma
,
S. C.
,
Girish
,
B. M.
,
Kamath
,
R.
, and
Satish
,
B. M.
,
1999
, “
Fractography, Fluidity, and Tensile Properties of Aluminum/Hematite Particulate Composites
,”
J. Mater. Eng. Perform.
,
8
(
3
), pp.
309
314
.10.1361/105994999770346855
5.
Seah
,
K. H. W.
,
Sharma
,
S. C.
,
Rao
,
P. R.
, and
Girish
,
B. M.
,
1995
, “
Mechanical Properties of as-Cast and Heat-Treated Za-27/Silicon Carbide Particulate Composites
,”
Mater. Des.
,
16
(
5
), pp.
277
281
.10.1016/0261-3069(96)00008-8
6.
Shanta
,
S.
,
Krishna
,
M.
, and
Jayagopal
,
U.
,
2001
, “
A Study on Damping Behavior of Aluminite Particulate Reinforced Za-27 Alloy Metal Matrix Composites
,”
J. Alloys Compd.
,
314
(
1–2
), pp.
268
274
.10.1016/S0925-8388(00)01235-4
7.
Park
,
B. G.
,
Crosky
,
A. G.
, and
Hellier
,
A. K.
,
2001
, “
Material Characterisation and Mechanical Properties of Al2O3-Al Metal Matrix Composites
,”
J. Mater. Sci.
,
36
, pp.
2417
2426
.10.1023/A:1017921813503
8.
Srivastava
,
T. S.
,
1996
, “
Microstructure, Tensile Properties and Fracture Behaviour of Al2O3 Particulate-Reinforced Aluminium Alloy Metal Matrix Composites
,”
J. Mater. Sci.
,
31
, pp.
1375
1388
.10.1007/BF00353120
9.
Seah
,
K. H. W.
,
Sharma
,
S. C.
, and
Girish
,
B. M.
,
1997
, “
Mechanical Properties of as-Cast and Heat-Treated Za-27/Graphite Particulate Composites
,”
Compos. Part A. Appl. Sci. Manuf.
,
28
(
3
), pp.
251
256
.10.1016/S1359-835X(96)00117-0
10.
Jha
,
A. K.
,
Dan
,
T. K.
,
Prasad
,
S. V.
, and
Rohatgi
,
P. K.
,
1986
, “
Aluminium Alloy-Solid Lubricant Talc Particle Composites
,”
J. Mater. Sci.
,
21
(
10
), pp.
3681
3685
.10.1007/BF02403021
11.
Miyajima
,
T.
, and
Iwai
,
Y.
,
2003
, “
Effects of Reinforcements on Sliding Wear Behaviour of Aluminum Matrix Composites
,”
Wear
,
255
, pp.
606
616
.10.1016/S0043-1648(03)00066-8
12.
Sohn
,
H. Y.
,
PalDey
,
S.
,
1998
, “
Synthesis of Ultrafine Particles and Thin Films of Ni4Mo by the Vapor-Phase Hydrogen Coreduction of the Constituent Metal Chlorides
,”
Mater. Sci. Eng., A.
,
247
(
1–2
), pp.
165
172
.10.1016/S0921-5093(97)00771-5
13.
Aylor
,
D. M.
,
1982
,
Metals Handbook
,
ASM Metals Park, OH
.
14.
Mahendra
,
K. V.
,
Radhakrishna
,
K.
,
2010
, “
Characterization of Stir Cast Al-Cu-(Fly Ash + Sic) Hybrid Metal Matrix Composites
,”
J. Compos. Mater.
,
44
(
8
), pp.
989
1005
.10.1177/0021998309346386
15.
Basavarajappa
,
S.
,
Chandran Mohan
,
G.
,
Mukund
,
K.
,
Ashwin
,
M.
, and
Prabu
,
M.
,
2006
, “
Dry Sliding Wear Behaviour of Al2219/Sic/Gr Hybrid Metal Matrix Composites
,”
J. Mater. Eng. Perform.
,
15
(
6
), pp.
668
674
.10.1361/105994906X150803
16.
Jasmi
,
H.
,
2001
, “
The Production of Cast Meta Matrix Composite by a Modified Stir Casting Method
,”
J. Technol.
,
35
(
A
), pp.
9
20
.10.1021/es012231r
17.
Manoj Singla
,
D.
,
Deepak
,
D.
,
Lakhvir
,
S.
, and
Vikas
,
C.
,
2009
, “
Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite
,”
J. Min. Mater. Charact. Eng.
,
8
(
6
), pp.
455
467
.
18.
Jayaseean
,
V.
,
Kalaichelvan
,
K.
,
Kannan
,
M.
, and
Vijay
,
M.
, and
Ananth
,
S.
,
2010
, “
Extrusion Characterizes of Al/Sic by Different Manufacturing Process
,”
Int. J. Appl. Eng. Res.
,
1
(
2
), pp.
194
199
.
19.
Miyajima
,
T.
, and
Iwai
,
Y.
,
2003
, “
Effects of Reinforcements on Sliding Wear Behaviour of Aluminium Matrix Composites
,”
Wear
,
255
(
1–6
), pp.
606
616
.10.1016/S0043-1648(03)00066-8
20.
Gonzalez
,
C.
,
Martin
,
A.
,
Llorca
,
J.
,
Garrido
,
M. A.
,
Gomez
,
M. T.
,
Rico
,
A.
, and
Rodriguez
,
J.
,
2005
, “
Numerical Analysis of Pin on Disc Tests on Al-Li/Sic Composites
,”
J. Wear
,
259
, pp.
609
612
.10.1016/j.wear.2005.02.107
21.
Mandal
,
D.
,
Dutta
,
B. K.
, and
Panigrahi
,
S. C.
,
2004
, “
Wear and Friction Behaviour of Stir Cast Aluminium-Base Short Steel Fiber Reinforced Composites
,”
Wear
,
257
(
7–8
), pp.
654
664
.10.1016/j.wear.2004.02.006
22.
Song
,
J. I.
, and
Han
,
K. S.
,
1997
, “
Effect of Volume Fraction of Carbon Fibers on Wear Behaviour of Al/Al2O3/C Hybrid Metal Matrix Composites
,”
Compos. Struct.
,
39
(
3–4
), pp.
309
318
.10.1016/S0263-8223(97)00124-4
23.
Dolata Grosz
,
A.
, and
Wieczorek
,
J.
,
2007
, “
Tribological Properties of Hybrid Composites Containing Two Carbide Phases
,”
Arch. Mater. Sci. Eng.
,
28
(
3
), pp.
149
155
.
24.
Basavarajappa
,
S.
, and
Chandran mohan
,
G.
,
2005
, “
Wear Studies on Metal Matrix Composites: A Taguchi Approach
,”
J. Mater. Sci. Technol.
,
21
(
6
), pp.
845
850
.
25.
Umanath
,
K.
,
Selavamani
,
S. T.
, and
Palanikumar
,
K.
,
2011
, “
Friction and Wear Behaviour of Al 6061 Alloy (Sicp+Al203p) Hybrid Composites
,”
Int. Eng. Sci. Technol.
,
3
, pp.
5441
5451
.
26.
Hahsins
,
J.
,
Looney
,
L.
, and
Hashni
,
M. S. J.
,
1999
, “
Metal Matrix Composites Production by Stir Casting Method
,”
J. Mater. Process. Technol.
,
92–93
, pp.
1
7
.
27.
Naher
,
S.
,
Babazon
,
D.
, and
Looney
,
L.
,
2003
, “
Simulation of the Stir Casting Process
,”
J. Mater. Process. Technol.
,
143–144
, pp.
567
571
.10.1016/S0924-0136(03)00368-6
28.
Ross
,
P. J.
,
1996
,
Taguchi Techniques for Quality Engineering
,
Tata McGraw-Hill
,
New York
.
29.
Taguchi
,
G.
, and
Konishi
,
S.
,
1987
,
Taguchi Methods, Orthogonal Arrays and Linear Graphs, Tools for Quality Engineering
,
American Supplier Institute
,
MI
.
30.
Taguchi
,
G.
,
1993
,
Taguchi on Robust Technology Development Methods
,
ASME Press
,
New York
. pp.
1
40
.
31.
Ross
,
P., J.
,
1990
,
Taguchi Technique for Quality Engineering
,
Van Nostrand Reinhold Co.
,
New York
.
32.
Roy
,
R. K.
,
1990
,
A Primer on Taguchi Method
,
Van Nostrand Reinhold Co
,
New York
.
33.
Davim
,
J. P.
,
2000
, “
An Experimental Study of Tribological Behaviour of the Brass/Steel Pair
,”
J. Mater. Process. Technol.
,
100
, pp.
273
279
.10.1016/S0924-0136(99)00491-4
34.
Davim
,
J. P.
,
2003
, “
Design Optimization of Cutting Parameters for Turning Metal Matrix Composites Based on the Orthogonal Arrays
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
340
344
.10.1016/S0924-0136(02)00946-9
35.
Ross
,
P. J.
,
1998
,
Taguchi Technique for Quality Engineering
,
Tata McGraw-Hill
,
New York
.
36.
Siddharta
,
Patnaik
,
A. S.
,
Bhatt
,
A. D.
,
2011
, “
Mechanical and Dry Sliding Wear Characterization of Epoxy-Tio2 Particulate Filled Functionally Graded Composite Materials Using Taguchi Design of Experiment
,”
Mater. Design.
,
32
(
2
), pp.
615
627
.10.1016/j.matdes.2010.08.011
37.
Palanikumar
,
K.
,
2008
, “
Application of Taguchi and Response Surface Methodologies for Surface Roughness in Machining Glass Fiber Reinforced Plastics by PCD Tooling
,”
Int. J. Adv. Manuf. Technol.
,
36
(
1–2
), pp.
19
27
.10.1007/s00170-006-0811-0
38.
Montgomery
,
D. C.
,
1996
,
Design and Analysis of Experiments
,
John Wiley and Sons
,
New York
.
39.
Esteban Fernandez
,
J.
,
Ma del Rocio
,
F.
,
Vijande Diaz
,
R.
, and
Navarro
,
T.
,
2003
, “
Abrasive Wear Analysis Using Factorial Design
,”
Wear
,
255
, pp.
38
43
.10.1016/S0043-1648(03)00103-0
40.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
1999
,
Applied Statistics and Probablity for Engineers
,
John Wiley and Sons
,
New York
.
41.
Montgomery
,
D. C.
,
2007
,
Design and Analysis of Experiments
,
Wiley India Pvt. Ltd.
,
New Delhi
.
42.
Radhika
,
N.
,
Subramanian
,
R.
, and
Venkat Prasat
,
S.
,
2011
, “
Tribological Behaviour of Aluminium/Alumina/Graphite Hybrid Metal Matrix Composite Using Taguchi's Techniques
,”
J. Min. Mater. Chart. Eng.
,
10
, pp.
427
443
.
43.
Basavarajappa
,
S.
, and
Chandramohan
,
G.
,
2005
, “
Wear Studies on Metal Matrix Composites: A Taguchi Approach
,”
J. Mater. Sci. Technol.
,
21
(
6
), pp.
845
850
.
You do not currently have access to this content.