During hot extrusion process, die wear shortens markedly the service life of extrusion dies under the high-pressure, high-temperature conditions. In this paper, based on modified Archard's wear model, a user-defined subroutine for calculating die wear depth was developed and implanted into DEFORM-3D. On the basis of the numerical model, the die wear behavior during aluminum alloy 7075 tube extrusion has been investigated. The numerical results show that process variables have multiple effects on die wear behavior. With the increasing ram speed, wear depth of die bearing rises and then tends to decline gradually. From the ram speed of 15 mm/s, die wear depth begins to increase again. Wear depth rises suddenly with the increase of friction coefficient, then gradually reduces. When friction coefficient is greater than 0.8, wear depth tends to be a constant. A maximum wear depth occurs at 430 °C of billet temperature, and a minimum wear depth occurs at certain die temperature in the range of 400–425 °C. In addition, the required extrusion force has strong dependence on process variables. The extrusion force rises clearly with the increase of ram speed and friction coefficient and with the decrease of initial temperatures of billet and die.

References

References
1.
Stahlberg
,
U.
, and
Hallstrom
,
J.
,
1999
, “
A Comparison Between Two Wear Models
,”
J. Mater. Process. Technol.
,
87
, pp.
223
229
.10.1016/S0924-0136(98)00354-9
2.
Painter
,
B.
,
Shivpuri
,
R.
, and
Altan
,
T.
,
1996
, “
Prediction of Die Wear During Hot-Extrusion of Engine Valves
,”
J. Mater. Process. Technol.
,
59
, pp.
132
143
.10.1016/0924-0136(96)02294-7
3.
Lee
,
G. A.
, and
Im
,
Y. T.
,
1999
, “
Finite-Element Investigation of the Wear and Elastic Deformation of Dies in Metal Forming
,”
J. Mater. Process. Technol.
,
89–90
, pp.
123
172
.10.1016/S0924-0136(99)00148-X
4.
Saha
,
P. K.
,
1998
, “
Thermodynamics and Tribology in Aluminum Extrusion
,”
Wear
,
218
, pp.
179
190
.10.1016/S0043-1648(98)00210-5
5.
Eriksen
,
M.
,
1997
, “
The Influence of Die Geometry on Tool Wear in Deep Drawing
,”
Wear
,
207
, pp.
10
15
.10.1016/S0043-1648(96)07461-3
6.
Björk
,
T.
,
Westergård
,
R.
, and
Hogmark
,
S.
,
2001
, “
Wear of Surface Treated Dies for Aluminum Extrusion-A Case Study
,”
Wear
,
249
, pp.
316
323
.10.1016/S0043-1648(01)00550-6
7.
Behrens
,
B. A.
, and
Schaefer
,
F.
,
2005
, “
Prediction of Wear in Hot Forging Tools by Means of Finite-Element-Analysis
,”
J. Mater. Process. Technol.
,
167
, pp.
309
315
.10.1016/j.jmatprotec.2005.06.057
8.
Lepadatu
,
D.
,
Hambli
,
R.
,
Kobi
,
A.
, and
Barreau
,
A.
,
2006
, “
Statistical Investigation of Die Wear in Metal Extrusion Processes
,”
Int. J. Adv. Manuf. Technol.
,
28
, pp.
272
278
.10.1007/s00170-004-2362-6
9.
Biglari
,
F. R.
, and
Zamani
,
M.
,
2008
, “
Die Wear Profile Investigation in Hot Forging
,”
Proc. the World Congress on Engineering
,
London, U.K.
, Vol.
2
, pp.
3
7
.
10.
Abachi
,
S.
,
Akkök
,
M.
, and
Gökler
,
M. I.
,
2010
, “
Wear Analysis of Hot Forging Dies
,”
Tribol. Int.
,
43
, pp.
467
473
.10.1016/j.triboint.2009.07.011
11.
Tekeli
,
S.
,
Güral
,
A.
, and
Özyürek
,
D.
,
2007
, “
Dry Sliding Wear Behavior of Low Carbon Dual Phase Powder Metallurgy Steels
,”
Mater. Des.
,
28
, pp.
1685
1688
.10.1016/j.matdes.2006.03.013
12.
Ficici
,
F.
,
Kapsiz
,
M.
, and
Durat
,
M.
,
2011
, “
Applications of Taguchi Design Method to Study Wear Behaviour of Boronized AISI 1040 Steel
,”
Int. J. Phys. Sci.
,
6
(
2
), pp.
237
243
.10.5897/IJPS11.009
13.
Kang
,
J. H.
,
Park
,
I. W.
,
Jae
,
J. S.
, and
Kang
,
S. S.
,
1999
, “
A Study on a Die Wear Model Considering Thermal Softening: (I) Construct Ion of the Wear Model
,”
J. Mater. Process. Technol.
,
96
, pp.
53
58
.10.1016/S0924-0136(99)00103-X
14.
Kang
,
J. H.
,
Park
,
I. W.
,
Jae
,
J. S.
, and
Kang
,
S. S.
,
1999
, “
A Study on a Die Wear Model Considering Thermal Softening: (II): Application of the Suggested Wear Model
,”
J. Mater. Process. Technol.
,
94
, pp.
183
188
.10.1016/S0924-0136(99)00104-1
15.
Lee
,
R. S.
, and
Jou
,
J. L.
,
2003
, “
Application of Numerical Simulation for Wear Analysis of Warm Forging Die
,”
J. Mater. Process. Technol.
,
140
, pp.
43
48
.10.1016/S0924-0136(03)00723-4
16.
Sellars
,
C. M.
, and
Tegart
,
W. J.
,
1966
, “
On the Mechanism of Hot Deformation
,”
Acta Mater.
,
14
, pp.
1136
1138
.10.1016/0001-6160(66)90207-0
17.
Bauser
,
M.
,
Sauer
,
G.
, and
Siegert
,
K.
,
2001
,
Extrusion
,
2nd ed.
,
ASM International
, Materials Park, Ohio.
You do not currently have access to this content.