A first-principle based mathematical model is developed in this paper to analyze the meshing losses in involute spur gears operating in high-load and high-speed conditions. The model is fundamentally simple with a few clearly defined physical parameters. It is computationally robust and produces meaningful trends and relative magnitudes of the meshing losses with respect to the variations of key gear and lubricant parameters. The model is evaluated with precision experimental data. It is then used to study the effects of various gear and lubricant parameters on the meshing losses including gear module, pressure angle, tooth addendum height, thermal conductivity, and lubricant pressure-viscosity and temperature-viscosity coefficients. The results and analysis suggest that gear module, pressure angle, and lubricant pressure-viscosity and temperature-viscosity coefficients can significantly affect the meshing losses. They should be the design parameters of interest to further improve the energy efficiency in high-performance, multistage transmission systems. Although the model is developed and results obtained for spur gears, the authors believe that the trends and relative magnitudes of the meshing losses with respect to the variations of the gear and lubricant parameters are still meaningful for helical gears.

References

References
1.
Britton
,
R. D.
,
Elcoate
,
C. D.
,
Alanou
,
M. P.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2000
, “
Effect of Surface Finish on Gear Tooth Friction
,”
ASME J. Tribol.
,
122
, pp.
354
360
.10.1115/1.555367
2.
Lehtovaara
,
A.
,
2002
, “
Calculation of Sliding Power Loss in Spur Gear Contacts
,”
Tribotest
,
9
, pp.
23
34
.10.1002/tt.3020090104
3.
Handschuh
,
R.
, and
Kilmain
,
C. J.
,
2003
, “
Preliminary Comparison of Experimental and Analytical Efficiency Results of High-Speed Helical Gear Trains
,” Paper No. NASA/TM212371.
4.
Martins
,
R.
,
Seabra
,
J.
,
Brito
,
A.
,
Seyfert
,
C.
,
Luther
,
R.
, and
Igartua
,
A.
,
2006
, “
Friction Coefficient in FZG Gears Lubricated With Industrial Gear Oils: Biodegradable Ester vs. Mineral Oil
,”
Tribol. Int.
,
39
, pp.
512
521
.10.1016/j.triboint.2005.03.021
5.
Diab
,
Y.
,
Ville
,
F.
, and
Velex
,
P.
,
2006
, “
Prediction of Power Losses due to Tooth Friction in Gears
,”
Tribol. Trans.
,
49
, pp.
260
270
.10.1080/05698190600614874
6.
Xu
,
H.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Maddock
,
D. G.
,
2007
, “
Prediction of Mechanical Efficiency of Parallel-Axis Gear Pairs
,”
ASME J. Tribol.
,
129
, pp.
58
68
.
7.
Petry-Johnson
,
T. T.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Chase
,
D. R.
,
2008
, “
An Experimental Investigation of Spur Gear Efficiency
,”
ASME J. Tribol.
,
130
, p.
062601
.
8.
Magalhaes
,
L.
,
Martins
,
R.
,
Locateli
,
C.
, and
Seabra
,
J.
,
2010
, “
Influence of Tooth Profile and Oil Formulation on Gear Power Loss
,”
Tribol. Int.
,
43
, pp.
1861
1871
.10.1016/j.triboint.2009.10.001
9.
Li.
,
S.
, and
Kahraman
,
A.
,
2010
, “
Prediction of Spur Gear Mechanical Power Losses Using a Transient Elastohydrodynamic Lubrication Model
,”
Tribol. Trans.
,
53
, pp.
554
563
.10.1080/10402000903502279
10.
Kuria
,
J.
, and
Kihiu
,
J.
,
2011
, “
Prediction of Overall Efficiency in Multistage Gear Trains
,”
Int. J. Aerospace and Mech. Eng.
,
5
:
3
, pp.
171
177
.
11.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, England
.
12.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
,
New York
.
13.
Larsson
,
R.
,
1997
, “
Transient Non-Newtonian Elastohydrodynamic Lubrication Analysis of an Involute Gear
,”
Wear
,
207
pp.
67
73
.10.1016/S0043-1648(96)07484-4
14.
Wang
,
Y.
,
Li
,
H.
,
Tong
,
J.
, and
Yang
,
P.
,
2004
, “
Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Tribol. Int.
,
37
, pp.
773
782
.10.1016/j.triboint.2004.04.005
15.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
, p.
011501-1
011501-9
.10.1115/1.4000270
16.
Chang
,
L.
,
1992
, “
Traction in Thermal Elastohydrodynamic Lubrication of Rough Surfaces
,”
ASME J. Tribol.
,
114
, pp.
186
191
.10.1115/1.2920859
17.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Poon
,
S. Y.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication
,”
Wear
,
19
, pp.
91
108
.10.1016/0043-1648(72)90445-0
18.
Dama
,
R.
, and
Chang
,
L.
,
1997
, “
An Efficient and Accurate Calculation of Traction in Elastohydrodynamic Contacts
,”
Wear
,
206
, pp.
113
121
.10.1016/S0043-1648(96)07309-7
19.
Dowson
,
D.
, and
Toyoda
,
S.
,
1977
, “
A Central Film Thickness Formula for Elastohydrodynamic Line Contacts
,”
Proc. 5th Leads/Lyon Symp.
, pp.
60
67
.
20.
Greenwood
,
J. A.
, and
Kauzlarich
,
J. J.
,
1973
Inlet Shear Heating in Elastohydrodynamic Lubrication (discussion by K. L. Johnson)
,”
ASME J. Lubr. Technol.
,
95
, pp.
417
425
.10.1115/1.3451844
21.
Chang
,
L.
,
Qu
,
S.
,
Webster
,
M. N.
, and
Jackson
,
A.
,
2006
, “
On the Mechanisms of the Reduction in EHL Traction in Low Temperature
,”
Tribol. Trans.
,
49
, pp.
182
191
.10.1080/05698190500544619
22.
Chang
,
L.
,
2006
, “
A Parametric Analysis of Thermal Shear Localization in Elastohydrodynamic Lubrication Films
,”
ASME J. Tribol.
,
128
, pp.
79
84
.10.1115/1.2125968
23.
Willermet
,
P. A.
,
McWatt
,
D. G.
, and
Wedeven
,
L. D.
,
1999
, “
Traction Behavior Under Extreme Conditions
,”
SAE International Fall Fuels and Lubricants Meeting and Exposition
,
Toronto, Ontario, Canada
, Oct. 25–28, SAE Paper No. 1999-01-3612.
24.
Webster
,
M. N.
,
Lee
,
G. H.
, and
Chang
,
L.
,
2006
, “
Effect of EHL Conditions on the Behavior of Traction Fluids
,”
Tribol. Trans.
,
49
, pp.
439
448
.10.1080/10402000600815016
25.
Jaeger
,
J. C.
,
1942
, “
Moving Surfaces of Heat and the Temperature at Sliding Contacts
,”
Proc. R. Soc. N.S.W.
,
56
, pp.
203
224
.
26.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
,
1977
, “
Shear Behavior of EHD Oil Films
,”
Proc. R. Soc. London, Ser. A
,
356
, pp.
215
236
.10.1098/rspa.1977.0129
27.
Chang
,
L.
,
2009
, “
Effects of Thermally Induced Inhomogeneous Shear and Surface Thermal Boundary Conditions on the Shear Stress in Sliding Elastohydrodynamic Contacts
,”
Lubr. Sci.
,
21
, pp.
227
240
.10.1002/ls.84
28.
Hohn
,
B.
,
Michaelis
,
K.
, and
Wimmer
,
A.
,
2007
, “
Low Loss Gears
,”
Gear Technol.
,
24
, pp.
28
35
.
29.
Velex
,
P.
, and
Ville
,
F.
,
2009
, “
An Analytical Approach to Tooth Friction Losses in Spur and Helical Gears – Influence of Profile Modification
,”
ASME J. Mech. Des.
,
131
, p.
101008-1
101008-10
.10.1115/1.3179156
30.
Paluch
,
M.
,
Denzik
,
Z.
, and
Rzoska
,
S. J.
,
1999
, “
Scaling of High-Pressure Viscosity Data in Low-Molecular-Weight Glass-Forming Liquids
,”
Phys. Rev. B
,
60
, pp.
2929
2982
.10.1103/PhysRevB.60.2979
31.
Kumar
,
P.
,
Khonsari
,
M. M.
, and
Bair
,
S.
,
2009
, “
Anharmonic Variations in Elastohydrodynamic Film Thickness Resulting from Harmonically Varying Entrainment Velocity
,”
IMechE J. Eng. Tribol.
,
224
, pp.
239
247
.10.1243/13506501JET669
You do not currently have access to this content.