This paper investigates the effects of lubricant compressibility on the film-forming performance of thermal elastohydrodynamic lubricated (EHL) circular contacts. Numerical film thickness predictions using the classical Dowson and Higginson relationship are compared to those that would be obtained using a more realistic compressibility model, all other parameters kept unchanged. This allows an isolation of the realistic compressibility effects on the film-forming performance. For realistic predictions, the authors consider two model liquids from the 1953 report of the ASME Research Committee on Lubrication, the most and the least compressible. The compressibility of these liquids is modeled using the Tait equation of state (EoS) while all other transport properties are kept unchanged for the sake of isolating compressibility effects. In addition, the same typical generalized-Newtonian behavior is assumed for both model liquids. The results reconfirm the well-known observations that minimum film thickness is very little affected by lubricant compressibility while central film thickness decreases linearly with the increase in volume compression of the lubricant. It is also observed that the relative errors on central film thicknesses induced by the use of the Dowson and Higginson relationship for compressibility increase with load and temperature and are very little affected by mean entrainment speed. Compressibility is shown to be a significant source of error in film-derived measurements of pressure-viscosity coefficients especially at high temperature. The thermodynamic scaling that provides an accurate and consistent framework for the correlation of the thermophysical properties of liquids with temperature and pressure requires an accurate equation of state. In brief, this paper highlights the importance of using realistic transport properties modeling based on thermodynamic scaling for an accurate numerical prediction of the performance of EHL contacts.

References

References
1.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution of the Elastohydrodynamic Problem
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
.10.1243/JMES_JOUR_1959_001_004_02
2.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Contacts, Part I—Theoretical Formulation
,”
ASME J. Lubr. Techn.
,
98
(
2
), pp.
223
229
.10.1115/1.3452801
3.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III—Fully Flooded Results
,”
ASME J. Lubr. Techn.
,
99
(
2
), pp.
264
276
.10.1115/1.3453074
4.
Kweh
,
C. C.
,
Evan
,
H. P.
, and
Snidle
,
R. W.
,
1989
, “
Elastohydrodynamic Lubrication of Heavily Loaded Circular Contacts
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
203
, pp.
133
148
.10.1243/PIME_PROC_1989_203_096_02
5.
Venner
,
C. H.
, and
Bos
,
J.
,
1994
, “
Effects of Lubricant Compressibility on the Film Thickness in EHL Line and Circular Contacts
,”
Wear
,
173
, pp.
151
165
.10.1016/0043-1648(94)90268-2
6.
Jacobson
,
B.
, and
Vinet
,
P.
,
1987
, “
A Model for the Influence of Pressure on the Bulk Modulus and the Influence of Temperature on the Solidification Pressure for Liquid Lubricants
,”
ASME J. Tribol.
,
109
(
4
), pp.
709
714
.10.1115/1.3261542
7.
Dowson
,
D.
,
Higginson
,
G. R.
, and
Whitaker
,
A. V.
,
1962
, “
Elasto-Hydrodynamic Lubrication: A Survey of Isothermal Solutions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
4
(
2
), pp.
121
126
.10.1243/JMES_JOUR_1962_004_018_02
8.
López
,
E. R.
,
Pensado
,
A. S.
,
Fernández
,
J.
, and
Harris
,
K. R.
,
2012
, “
On the Density Scaling of pVT Data and Transport Properties for Molecular and Ionic Liquids
,”
J. Chem. Phys.
136
, p.
214502
.10.1063/1.4720070
9.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Bair
,
S.
,
Vergne
,
P.
, and
Morales-Espejel
G.
,
2008
, “
Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian / Generalized Newtonian Lubricant
,”
Tribol. Lett.
,
30
(
1
), pp.
41
52
.10.1007/s11249-008-9310-9
10.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribol. Int.
,
43
, pp.
1842
1850
.10.1016/j.triboint.2009.10.002
11.
Kaneta
,
M.
, and
Yang
,
P.
,
2010
, “
Effects of the Thermal Conductivity of Contact Materials on Elastohydrodynamic Lubrication Characteristics
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
224
(
12
), pp.
2577
2587
.10.1243/09544062JMES2146
12.
Crocker
,
M. J.
,
1998
,
Handbook of Acoustics
,
Wiley
,
New York
, pp.
69
71
.
13.
Doolittle
,
A. K.
,
1951
, “
Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space
,”
J. Appl. Phys.
,
22
(
12
), pp.
1471
1475
.10.1063/1.1699894
14.
Hayward
,
A. T. J.
,
1971
, “
How to Measure the Isothermal Compressibility of Liquids Accurately
,”
J. Phys. D: Appl. Phys.
,
4
(
7
), pp.
938
950
.10.1088/0022-3727/4/7/308
15.
Bridgman
,
P. W.
,
1931
,
The Physics of High Pressure
,
Dover
,
New York
, pp.
126
127
.
16.
Back
,
P. J.
,
Easteal
,
A. J.
,
Hurle
,
R. L.
, and
Woolf
,
L.A.
,
1982
, “
High-Precision Measurements With a Bellows Volumometer
,”
J. Phys. E: Sci. Instr.
,
15
(
3
), pp.
360
363
.10.1088/0022-3735/15/3/027
17.
Dymond
,
J. H.
, and
Malhotra
,
R.
,
1988
, “
The Tait Equation: 100 Years On
,”
Int. J. Thermophys.
,
9
(
6
), pp.
941
951
.10.1007/BF01133262
18.
Cook
,
R. L.
,
King
,
H. E.
,
Herbst
,
C. A.
, and
Herschbach
,
D.R.
,
1994
, “
Pressure and Temperature Dependent Viscosity of Two Glass Forming Liquids: Glycerol and Dibutyl Phthalate
,”
J. Chem. Phys.
,
100
(
7
), pp.
5178
5189
.10.1063/1.467276
19.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R.B.
,
1954
,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
, p.
261
.
20.
Millat
,
J.
,
Dymond
,
J. H.
, and
de Castro
,
C. A. N.
,
1996
,
Transport Properties of Fluids Their Correlation, Prediction and Estimation
,
IUPAC
,
Cambridge
, p.
172
.
21.
Tanaka
,
Y.
,
Nojiri
,
N.
,
Ohta
,
K.
,
Kubota
,
H.
, and
Makita
,
T.
,
1989
, “
Density and Viscosity of Linear Perfluoropolyethers Under High Pressures
,”
Int. J. Thermophys.
,
10
(
4
), pp.
857
870
.10.1007/BF00514481
22.
Cibulka
,
I.
, and
Takagi
,
T.
,
1999
, “
P-ρ-T Data of Liquids: Summarization and Evaluation. 5. Aromatic Hydrocarbons
,”
J. Chem. Eng. Data
,
44
(
3
), pp.
411
429
.10.1021/je980278v
23.
Cibulka
,
I.
,
Hnědkovský
,
L.
, and
Takagi
,
T.
,
1997
, “
P-ρ-T Data of Liquids: Summarization and Evaluation. 4. Higher 1-Alkanols (C11, C12, C14, C16), Secondary, Tertiary, and Branched Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and Aromatic Hydroxy Derivatives
,”
J. Chem. Eng. Data
,
42
(
3
), pp.
415
433
.10.1021/je960389z
24.
Cibulka
,
I.
, and
Takagi
,
T.
,
1999
, “
P-ρ-T Data of Liquids: Summarization and Evaluation. 6. Nonaromatic Hydrocarbons (Cn, n ≥ 5) Except n-Alkanes C5 to C16
,”
J. Chem. Eng. Data
,
44
(
6
), pp.
1105
1128
.10.1021/je990140s
25.
Rogers
,
P. A.
,
1993
, “
Pressure–Volume–Temperature Relationships for Polymeric Liquids: A Review of Equations of State and their Characteristic Parameters for 56 Polymers
,”
J. Appl. Polymer Sci.
,
48
(
6
), pp.
1061
1080
.10.1002/app.1993.070480613
26.
Dymond
,
J. H.
,
Malhotra
,
R.
,
Isdale
,
J. D.
, and
Glen
,
N. F. M.
,
1988
, “
(p, r, T) of n-Heptane, Toluene, and Oct-1-ene in the Range 298 to 373 K and 0.1 to 400 MPa and Representation by the Tait Equation
,”
J. Chem. Thermodyn.
,
20
(
5
), pp.
603
614
.10.1016/0021-9614(88)90090-0
27.
Fakhreddine
,
Y. A.
, and
Zoller
,
P.
,
1990
, “
The Equation of State of a Polydimethylsiloxane Fluid
”,
J. Appl. Polymer Sci.
,
41
, pp.
1087
1093
.10.1002/app.1990.070410518
28.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2012
, “
Stabilized Fully Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Softw.
,
46
, pp.
4
18
.10.1016/j.advengsoft.2010.09.010
29.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
, pp.
631
636
.10.1115/1.2920308
30.
Wu
,
S. R.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
.10.1016/0020-7225(86)90032-7
31.
Deuflhard
,
P.
,
2004
,
Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive Algorithms
,
Springer
,
Germany
.
32.
Kleinschmidt
,
R. V.
,
Bradbury
,
D.
, and
Mark
,
M.
,
1953
,
Viscosity and Density of Over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F
,
ASME
,
New York
.
33.
Bair
,
S.
,
2009
, “
Rheology and High-Pressure Models for Quantitative Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
223
(
4
), pp.
617
628
.10.1243/13506501JET506
34.
Harris
,
K. R.
, and
Bair
,
S.
,
2007
, “
Temperature and Pressure Dependence of the Viscosity of Di-isodecyl Phthalate at Temperatures Between (0 and 100)  °C and at Pressures to 1 GPa
,”
J. Chem. Eng. Data
,
52
, pp.
272
278
.10.1021/je060382+
35.
Bair
,
S.
,
2002
, “
The High Pressure Rheology of Some Simple Model Hydrocarbons
”,
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
216
, pp.
139
149
.10.1243/1350650021543960
36.
Bair
,
S.
,
2007
,
High-Pressure Rheology for Quantitative Elastohydrodynamics
,
Elsevier Science
,
Amsterdam
, pp.
115
116
, 225.
37.
Angell
,
C. A.
,
1995
, “
Formation of Glasses From Liquids and Biopolymers
”,
Science
,
276
, pp.
1924
1935
.10.1126/science.267.5206.1924
38.
Jubault
,
I.
,
Molimard
,
J.
,
Lubrecht
,
A. A.
,
Mansot
,
J. L.
, and
Vergne
,
P.
,
2003
, “
In Situ Pressure and Film Thickness Measurements in Rolling/Sliding Lubricated Point Contacts
,”
Tribol. Lett.
,
15
(
4
), pp.
421
429
.10.1023/B:TRIL.0000003068.07650.2e
39.
Van Leeuwen
,
H.
,
2009
, “
The Determination of the Pressure-Viscosity Coefficient of a Lubricant Through an Accurate Film Thickness Formula and Accurate Film Thickness Measurements
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
223
(
4
), pp.
1143
1163
.10.1243/13506501JET504
40.
Krupka
,
I.
,
Bair
,
S.
,
Kumar
,
P.
,
Khonsari
,
M. M.
, and
Hartl
,
M.
,
2009
, “
An Experimental Validation of the Recently Discovered Scale Effect in Generalized Newtonian EHL
,”
Tribol. Lett.
,
33
, pp.
127
135
.10.1007/s11249-008-9397-z
41.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2012
, “
Thermophysical Properties of Fluid Systems
,”,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
P.J.
Linstrom
and
W.G.
Mallard
, eds.,
National Institute of Standards and Technology
,
Gaithersburg MD
,
20899
.
You do not currently have access to this content.