The elastic contact between two computer generated isotropic rough surfaces is studied. First the surface topography parameters including the asperity density, mean summit radius, and standard deviation of asperity heights of the equivalent rough surface are determined using an 8-nearest neighbor summit identification scheme. Second, many cross sections of the equivalent rough surface are traced and their individual topography parameters are determined from their corresponding spectral moments. The topography parameters are also obtained from the average spectral moments of all cross sections. The asperity density is found to be the main difference between the summit identification scheme and the spectral moments method. The contact parameters such as the number of contacting asperities, real area of contact, and contact load for any given separation between the equivalent rough surface and a rigid flat are calculated by summing the contributions of all the contacting asperities using the summit identification model. These contact parameters are also obtained with the Greenwood-Williamson (GW) model using the topography parameters from each individual cross section and from the average spectral moments of all cross sections. Three different surfaces and three different sampling intervals were used to study how the method to determine topography parameters affects the resulting contact parameters. The contact parameters are found to vary significantly based on the method used to determine the topography parameters, and as a function of the autocorrelation length of the surface, as well as the sampling interval. Using a summit identification model or the GW model based on topography parameters obtained from a summit identification scheme is perhaps the most reliable approach.

References

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A. Math. Phys.
,
295
, pp.
300
319
.10.1098/rspa.1966.0242
2.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
J. Appl. Mech.
,
34
(
1
), pp.
153
159
.10.1115/1.3607616
3.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Surfaces
,”
Proc. Int. Mech. Eng.
,
185
, pp.
625
634
.10.1243/PIME_PROC_1970_185_069_02
4.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of Rough Surface
,”
Wear
,
35
(
1
), pp.
87
111
.10.1016/0043-1648(75)90145-3
5.
O'Callaghan
,
M.
, and
Cameron
,
M.
,
1976
, “
Static Contact Under Load Between Nominally Flat Surfaces in Which Deformation Is Purely Elastic
,”
Wear
,
36
(
1
), pp.
79
97
.10.1016/0043-1648(76)90145-9
6.
Greenwood
,
J. A.
,
2006
, “
A Simplified Elliptical Model for Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
.10.1016/j.wear.2005.09.031
7.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2008
, “
Asperity Contact Theories: Do They Predict Linearity Between Contact Area and Load?
J. Mech. Phys. Solids
,
56
(
8
), pp.
2555
2572
.10.1016/j.jmps.2008.03.011
8.
Paggi
,
M.
, and
Ciavarella
,
M.
,
2010
, “
The Coefficient of Proportionality κ Between Real Contact Area and Load, With New Asperity Models
,”
Wear
,
268
, pp.
1020
1029
.10.1016/j.wear.2009.12.038
9.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2011
, “
Contact Mechanics of Rough Surfaces: A Comparison Between Theories
,”
Meccanica
,
46
(
3
), pp.
557
565
.10.1007/s11012-010-9315-y
10.
Majumbdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic–Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.10.1115/1.2920588
11.
Persson
,
B. N. J.
,
2001
, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
,
115
,
3840
3861
.10.1063/1.1388626
12.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.10.1016/0043-1648(86)90045-1
13.
McCool
,
J. I.
,
1986
, “
Predicting Microcontact in Ceramics Via a Microcontact Model
,”
ASME J. Tribol.
,
108
(
3
), pp.
380
386
.10.1115/1.3261209
14.
McCool
,
J. I.
,
1987
, “
Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
264
270
.10.1115/1.3261349
15.
Zhao
,
Y.
, and
Chang
,
L.
,
2001
, “
A Model of Asperity Interactions in Elastic-Plastic Contact of Rough Surfaces
,”
ASME J.
,
123
(
4
), pp.
57
64
.10.1115/1.1324672
16.
Lee
,
C. H.
, and
Polycarpou
,
A.
,
2007
, “
Static Friction Experiments and Verification of an Improved Elastic-Plastic Model Including Roughness Effects
,”
ASME J. Tribol.
,
129
(
4
), pp.
754
760
.10.1115/1.2768074
17.
Akbarzadeh
,
S.
, and
Khonsari
,
M.
,
2008
, “
Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant
,”
ASME J. Tribol.
,
130
(
2
), p.
021503
.10.1115/1.2805431
18.
Uchidate
,
M.
,
Iwabuchi
,
A.
,
Kikuchi
,
K.
, and
Shimizu
,
T.
,
2009
, “
Research on the Validity of Using Nayak's Theory for Summit Parameters of Discrete Isotropic Gaussian Surfaces
,”
J. Adv. Mech. Des. Syst. Manuf.
,
3
(
2
), pp.
125
135
.10.1299/jamdsm.3.125
19.
Wilson
,
W. E.
,
Angadi
,
S. V.
, and
Jackson
,
R. L.
,
2010
, “
Surface Separation and Contact Resistance Considering Sinusoidal Elastic–Plastic Multi-Scale Rough Surface Contact
,”
Wear
,
268
(
1–2
), pp.
190
201
.10.1016/j.wear.2009.07.012
20.
Lee
,
C. H.
,
Eriten
,
M.
, and
Polycarpou
,
A.
,
2010
, “
Application of Elastic-Plastic Static Friction Models to Rough Surfaces With Asymmetric Asperity Distribution
,”
ASME J. Tribol.
,
132
(
3
), p.
031602
.10.1115/1.4001547
21.
Dickey
,
R. D. I.
,
Jackson
,
R.
, and
Flowers
,
G.
,
2011
, “
Measurements of the Static Friction Coefficient Between Tin Surfaces and Comparison to a Theoretical Model
,”
ASME J. Tribol.
,
133
(
3
), p.
031408
.10.1115/1.4004338
22.
Kogut
,
L.
, and
Jackson
,
R.
,
2006
, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
ASME J. Tribol.
,
128
(
1
), pp.
213
217
.10.1115/1.2114949
23.
Etsion
,
I.
, and
Amit
,
M.
,
1993
, “
The Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces
,”
ASME J. Tribol.
,
115
(
3
), pp.
406
410
.10.1115/1.2921651
24.
Raeymaekers
,
B.
,
Etsion
,
I.
, and
Talke
,
F. E.
,
2007
, “
Enhancing Tribological Performance of the Magnetic Tape/Guide Interface by Laser Surface Texturing
,”
Tribol. Lett.
,
27
(
1
), pp.
89
95
.10.1007/s11249-007-9211-3
25.
Jackson
,
R. L.
, and
Green
,
I.
,
2011
, “
On the Modeling of Elastic Contact Between Rough Surfaces
,”
Tribol. T.
,
54
, pp.
300
314
.10.1080/10402004.2010.542277
26.
Greenwood
,
J. A.
,
1984
, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. A. Math. Phys.
,
393
, pp.
133
157
.10.1098/rspa.1984.0050
27.
Tomanik
,
E.
,
Chacon
,
H.
, and
Teixeira
,
G.
,
2003
, “
A Simple Numerical Procedure to Calculate the Input Data of Greenwood-Williamson Model of Asperity Contact for Actual Engineering Surfaces
,”
Tribol. S.
,
41
, pp.
205
215
.10.1016/S0167-8922(03)80133-5
28.
Yu
,
N.
, and
Polycarpou
,
A.
,
2004
, “
Extracting Summit Roughness Parameters From Random Gaussian Surfaces Accounting for Asymmetry of the Summit Heights
,”
ASME J. Tribol.
,
126
(
4
), pp.
761
766
.10.1115/1.1792698
29.
Pawlus
,
P.
,
2007
, “
Digitisation of Surface Topography Measurement Results
,”
Measurement
,
40
(
6
), pp.
672
686
.10.1016/j.measurement.2006.07.009
30.
Suh
,
A.
,
Polycarpou
,
A.
, and
Conry
,
T.
,
2003
, “
Detailed Surface Roughness Characterization of Engineering Surfaces Undergoing Tribological Testing Leading to Scuffing
,”
Wear
,
255
(
1–6
), pp.
556
568
.10.1016/S0043-1648(03)00224-2
31.
Li
,
M.
,
Phillips
,
M. J.
, and
Whitehouse
,
D. J.
,
1989
, “
Extension of Two-Dimensional Sampling Theory
,”
J. Phys. A. Math. Gen.
,
22
, pp.
5053
5063
.10.1088/0305-4470/22/23/010
32.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1995
, “
Comparison of Surface Roughness Measurements by Stylus Profiler, AFM and Non-Contact Optical Profiler
,”
Wear
,
190
(
1
), pp.
76
88
.10.1016/0043-1648(95)06697-7
33.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1979
, “
Measurements of the Statistical Properties of Engineering Surfaces
,”
J. Lubr. Technol.
,
101
, pp.
409
417
.10.1115/1.3453384
34.
Wu
,
J. J.
,
2000
, “
Simulation of Rough Surfaces With FFT
,”
Tribol. Int.
,
33
(
1
), pp.
47
58
.10.1016/S0301-679X(00)00016-5
35.
ISO 25178 draft standard
, “
Geometrical Product Specifications—Surface Texture: Areal, Part 2: Terms
, Definitions and Surface Texture Parameters.
36.
Blunt
,
L.
, and
Jiang
,
X.
,
2003
, “
Numerical Parameters for Characterization of Topography
,”
Advanced Techniques for Assessment Surface Topography
,
L.
Blunt
and
X.
Jiang
, Eds.,
Kogan Page Science
,
London and Sterling
, pp.
17
41
.
37.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic Plastic Model for the Contact of Rough Surfaces
,”
Tribol. T.
,
46
(
3
), pp.
383
390
.10.1080/10402000308982641
38.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. A. Math. Phys.
,
316
, pp.
97
121
.10.1098/rspa.1970.0068
39.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.10.1115/1.3261348
40.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
J. Lubr. Technol.
,
100
, pp.
12
17
.10.1115/1.3453103
41.
Pawlus
,
P.
, and
Zelasko
,
W.
,
2012
, “
The Importance of Sampling Interval for Rough Contact Mechanics
,”
Wear
,
276–277
, pp.
121
129
.10.1016/j.wear.2011.12.015
You do not currently have access to this content.