The wear-fatigue rupture of Ni88P11.78Co0.12Fe0.10 (NiP) and Ni80.55Cr15.25B4.20 (NiCrB) glasses prepared by planar–flow casting have been studied using a test under simultaneous constant and cyclic loading generated by an eccentric rotation ceramic antagonist. For better apprehending the phenomena related to the structural state changes of samples before and after tests, structural characterization by x-ray diffraction, mechanical characterization by measuring Vickers microhardness (HV 0.1) and chemical composition by X-ray photoelectron spectroscopy (XPS) analysis have been carried out on as-quenched and worn dull side ribbons. Rupture surfaces, in S–N curves, have been measured by scanning electron microscope. Wear-fatigue contact tests consist to impose, simultaneously, a traction strain and cyclic normal stresses which generate traction, compression, rolling, bending and shearing. All results obtained from the two selected glasses (NiP and NiCrB) are systematically compared with those of a nickel pure crystalline foil (Ni). We evaluate mainly the wear mechanism, the mode and the typical rupture surface observed in NiP, NiCrB and Ni specimens. We specify the conditions of obtaining these rupture surfaces which often present in smooth plane, veining and “chevrons” patterns. All results show a great wear and fatigue resistance for the two metallic glasses compared to Ni. The NiCrB wear resistance is superior to that of NiP, while the difference in their fatigue limit is not clearly distinct. The reasons for the differences in wear and fatigue behavior will be discussed in relation to the metallic glass thermal stability, chemical composition, microhardness and surface rupture topography.

References

References
1.
Jeong
,
D. H.
,
Erb
,
U.
,
Aust
,
K. T.
, and
Palumbo
,
G.
, 2003, “
The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni–P Coatings
,”
Scr. Mater.
,
48
(
8
), pp.
1067
1072
.
2.
Henning
,
W.
,
Calvo
,
M.
, and
Osterstock
,
F.
, 1984, “
R-curve and Inhomogeneity Effects in Metallic Glass Ribbons: Advance in Fracture Research
,”
Proceeding of the 6th International Conference on Fracture (ICF6)
,
S. R.
Valluri
,
D. M. R.
,
Taplin
,
P.
,
Ramarao
,
J. F.
,
Knott
, and
R.
,
Dubey
, eds.,
New Delhi, India
, Vol.
4
, pp.
2761
2768
.
3.
Dolezal
,
N.
, and
Hausch
,
G.
, 1985, “
Wear Behaviour of Rapidly Solidified Fe68Cr18Mo2B12 Alloys
,”
Proc. 5th Int. Conf. on Rapidly Quenched Metals
,
Elsevier
,
Amsterdam
, Vol.
2
, pp.
1767
1770
.
4.
Hodge
,
A. M.
, and
Nieh
,
T. G.
, 2004, “
Evaluating Abrasive Wear of Amorphous Alloys Using Nanoscratch Technique
,”
Intermetallic and Advanced Metallic Materials – A, Symposium Dedicated to Dr. C. T. Liu, San Diego, CA, March 3–6, 2003
, Vol.
12
(
7–9
), pp.
741
748
.
5.
Kishore
,
S.
,
Sudarsan
,
U.
,
Chandran
,
U.
, and
Chattopadhyay
,
K
, 1987, “
On the Wear Mechanism of Iron and Nickel Based Transition Metal – Metalloid Metallic Glasses
,”
Acta Metall.
,
35
(
7
), pp.
1463
1473
.
6.
Gloriant
,
T.
, 2003, “
Microhardness and Abrasive Wear Resistance of Metallic Glasses and Nanostructured Composite Materials
,”
J. Non-Cryst. Solids
,
316
(
1
), pp.
96
103
.
7.
Bengus
,
V.
,
Tabachnikova
,
E.
,
Csach
,
K.
,
Miskuf
,
J.
, and
Ocelik
,
V.
, 1996, “
Possible Local Superplasticity of Amorphous Metallic Alloys the Catastrophic Shear Band Under Low Temperature Ductile Shear Failure
,”
Scr. Mater.
,
35
(
6
), pp.
781
784
.
8.
Xi-Young Fu, Kasai
,
T.
,
Falk
,
M. L.
, and
Rigney
,
D. A.
, 2001, “
Sliding Behavior of Metallic Glass: Part I. Experimental Investigation
,” 13th Int. Conf. on Wear Materials, Wear,” Vancouver, BC, Canada, Vol.
250
(
1–12
), pp.
409
430
.
9.
Verduzco
,
J. A.
,
Hand
,
R. J.
, and
Davies
,
H. A.
, 2002, “
Fatigue Behaviour of Fe-Cr-Si-B Metallic Glass Wires
,”
Int. J. Fatigue
,
24
(
10
), pp.
1089
1094
.
10.
Calvo
,
M.
, and
Osterstock
,
F.
, 1985, “
Fracture Mechanics Applied to Metallic Glass Ribbons
,”
Czech. J. Phys.
, B
35
, pp.
337
343
.
11.
Masumoto
,
T.
, and
Maddin
,
R.
, 1975, “
Structural Stability and Mechanical Properties of Amorphous Metals
,”
Mater. Sci. Eng.
, A
19
, pp.
1
24
.
12.
Guiraldenq
,
P.
,
Serrer
,
C.
,
Du
,
N.
,
Hiadsi
,
S.
,
Marest
,
G.
, and
Tousset
,
J.
, 1988, “
Fatigue Superficielle de Rubans Métalliques Amorphes Type Fe-Cr-C-P: Rôle d’une Implantation Ionique en Surface
,”
Mém. Etud. Sci. Rev. Métall.
, pp.
189
198
.
13.
Serrer
,
C.
, 1992, “
Etude du vieillissement thermomécanique et structural des rubans métalliques amorphes
,” Thése de Doctorat d’Etat, Constantine Mentouri University, Algeria.
14.
Prakash
,
B.
, and
Hratsuka
,
K. I.
, 2000, “
Sliding Wear Behaviour of Some Fe, Co and Ni Based Metallic Glasses During Rubbing Against Bearing Steel
,”
Tribol. Lett.
,
8
, pp.
153
160
.
15.
Prakash
,
B.
, 2005, “
Abrasive Wear Behaviour of Fe, Co and Ni Based Metallic Glasses
,”
Wear
,
258
, pp.
217
224
.
16.
Wege
,
F. V.
,
Skrotzky
,
B.
,
Hornbogen
,
E.
, and
Metalkde
,
Z.
, 1988, “
Abrasivvershleiβ Einer Schmelzgesponnenen und Nachfolgend Angelassenen Cobasis-legierung
,”
Bd 79 H.8
, pp.
492
498
.
17.
Doi
,
H.
,
Sugiyama
,
K.
,
Tono
,
T.
, and
Imura
,
T.
, 1982, “
Fatigue of Liquid Quenched Amorphous Metal
,”
Proceedings of the 4th Int. Conf. on Rapidly Quenched Metals
,
T.
Masumoto
and
K.
Susuki
, eds.,
Japanese Institute of Metals
,
Sendai
, pp.
1349
1352
.
18.
Schijve
,
J.
, 2003, “
Fatigue of Structures and Materials in the 20th Century and the State of the Art
,”
Int. J. Fatigue
,
25
(
8
), pp.
679
702
.
19.
Miyoshi
,
K.
, and
Buckley
,
D. H.
, 1991, “
Friction and Surface Chemistry of Some Ferrous – Base Metallic Glasses
,”
NASA TP
,
Lewis Research Center Cleveland
,
Ohio
, pp.
1
11
.
20.
Klinger
,
R.
, and
Feller
,
H. G.
, 1983, “
Sliding Friction and Wear Resistance of the Metallic Glass Fe40Ni40B20
,”
Wear
,
86
, pp.
287
297
.
21.
Zedler
,
E.
, and
Lehmann
,
G.
, 1984, “
Influence of Annealing Treatments on the Density of Amorphous Fe40Ni40P14B6 and Fe5Co70Si15B10 Alloys
,”
Phys. Status Solidi
,
81
(
2
), pp.
445
449
.
22.
Spaepen
,
F.
, and
Taub
,
A. I.
, 1983,
Amorphous Metallic Alloys
,
F. E.
Luborsky
, ed.,
Butterworths
,
London
, Chap. 13, pp.
231
251
.
23.
Greer
,
A. L.
, 1984, “
Atomic Transport and Structural Relaxation in Metallic Glasses
,”
J. Non-Cryst. Solids
,
61–62
(
1
), pp.
737
748
.
24.
Greer
,
A. L.
,
Gibbs
,
M. R. J.
,
Leake
,
J. A.
, and
Evetts
,
J. E.
, 1980, “
Structural Relaxation of Transition-Metal-Metalloid Metallic Glasses
,”
J. Non-Cryst. Solids
,
38–39
, pp.
379
384
.
25.
Deng
,
D.
, and
Argon
,
A. S.
, 1986, “
Structural Relaxation and Embrittlement of Cu59Zr41 and Fe80B20 Glasses
,”
Acta Metall.
,
34
(
10
), pp.
2011
2023
.
26.
Henning
,
W.
,
Calvo
,
M.
, and
Osterstock
,
F.
, 1984, “
Effect of r-curve and Inhomogeneities on the Toughness Measurement of Metallic Glasses
,”
M. R. S. Symposium: Rapidly Solidified Metastable Materials
,
B.
Kear
and
B. C.
Giessen
, eds.,
The Materials Research Society
,
North Holland
, pp.
203
210
.
27.
Gerling
,
R.
,
Schimansky
,
F. P.
, and
Wagner
,
R.
, 1987, “
Restoration of the Ductility of Thermally Embrittled Amorphous Alloys Under Neutron-Irradiation
,”
Acta Metall.
,
35
(
5
), pp.
1001
1006
.
28.
Gerling
,
R.
,
Schimansky
,
F. P.
, and
Wagner
,
R.
, 1988, “
Thermally Induced Restoration of the Free Volume by Thermal Treatments
,”
Scr. Metall.
,
22
, pp.
1291
1295
.
29.
Vinogradov
,
A.
,
Lazarev
,
A.
,
Louzguine-Luzgin
,
D. V.
,
Yokoyama
,
Y.
,
Li
,
S.
,
Yavary
,
A. R.
,
, and
Inoue
,
A.
, 2010, “
Propagation of Shear Bands in Metallic Glasses and Transition From Serrated to Non-Serrated Plastic Flow at Low Temperatures
,”
Acta Mater.
,
58
(
20
), pp.
6736
6743
.
30.
Calvo
,
M.
,
Menand
,
A.
,
Osterstock
,
F.
, and
Chermant
,
J. L.
, 1985, “
Correlation Between Fracture Mechanical and Atom Probe Investigations on Metallic Glass Ribbon
,”
MRS Bull.
,
58
, pp.
127
130
.
31.
Gilbert
,
C. J.
,
Ritchie
,
R. O.
, and
Johnson
,
W. L.
, 1997, “
Fracture Toughness and Fatigue–Crack Propagation in Zr-Ti-Ni-Cu-Be Bulk Metallic Glass
,”
Appl. Phys. Lett.
,
71
, pp.
476
478
.
32.
Miskuf
,
J.
,
Csach
,
K.
,
Jurikova
,
A.
,
Ocelic
,
V.
,
Bengus
,
V.
,
Tabachnicova
,
E.
, 2008, “
Faillure of Zr50Ti16.5Cu15Ni18.5 amorphous metallic ribbon
,”
Strength of Materials-Strength Mater-Engl TR
,
40
(
1
), pp.
20
23
.
33.
Hutchings
,
I. M.
, 2001, “
Wear and Lubrication
,”
Encyclopedia of Materials: Science and Technology
,
Elsevier
,
Amsterdam, Netherlands
, pp.
9551
9556
.
34.
Olofinjana
,
A. O.
, and
Davies
,
H. A.
, 1994, “
Structural Materials: Properties, Microstructure and Processing
,”
Mater. Sci. Eng.
, A,
186
(
1–2
), pp.
143
149
.
35.
Figueroa
,
I.A
,
Betancourt
,
I.
,
Lara
,
G.
,
Verduzco
,
J.A.
, 2005, “
Effect of B, Si and Cr on the mechanical properties of Fe-based amorphous metallic ribbons
,”
Journal of Non-Crystalline Solids
,
351
(
37–39
), pp.
3075
3080
.
You do not currently have access to this content.