New applications of carbon-based materials have been continuously developed in recent years. Carbon nanofibers (CNFs) with silane coatings were added into high density polyethylene (HDPE) to improve the tribological properties of the nanocomposite material. The nanocomposites were fabricated with various weight percentages of carbon nanofibers (0.5 wt.%, 1 wt.% and 3 wt.%) that were treated with different silane coating thicknesses (2.8 nm and 46 nm) through melt-mixing and compressive processing. The wear and friction tests were performed on a pin-on-disc tribometer under phosphate buffered saline lubricated condition. Compared with the neat HDPE, the friction coefficients of the nanocomposites were reduced in all samples, yet only a couple of nanocomposite samples showed lower wear rates. Micro-hardness measurements of the nanocomposites were carried out and CNFs were found to be capable of increasing the material’s micro-hardness. The effects of concentration and silane coating thickness of CNFs on the tribological properties of the resulting nanocomposites were analyzed and the wear mechanisms of the HDPE/CNF nanocomposites were discussed.

References

References
1.
Suh
,
N. P.
,
Mosleh
M.
, and
Arinez
J.
, 1998, “
Tribology of Polyethylene Homocomposites
,”
Wear
214
, pp.
231
236
.
2.
Anderson
J. C.
, 1982, “
High Density and Ultra-High Molecular Weight Polyethenes: Their Wear Properties and Bearing Applications
,”
Tribol. Int.
15
, pp.
43
47
.
3.
Sahebian
,
S.
,
Zebarjad
,
S. M.
,
Sajjadi
,
S. A.
,
Sherafat
,
Z.
, and
Lazzeri
A.
, 2007, “
Effect of Both Uncoated and Coated Calcium Carbonate on Fracture Toughness of HDPE/CaCO3 Nanocomposites
,”
J. Appl. Polym. Sci.
104
, pp.
3688
3694
.
4.
Guermazi
,
N.
,
Elleuch
,
K.
,
Ayedi
,
H. F.
,
Fridirici
V.
, and
Kapsa
Ph.
, 2009, “
Tribological Behavior of Pipe Coating in Dry Sliding Contact With Steel
,”
Mater. Des.
30
, pp.
3094
3104
.
5.
Mourad
A. -H.I.
,
Fouad
,
H.
, and
Elleithy
,
R.
, 2009, “
Impact of Some Environmental Conditions on the Tensile, Creep-recovery, Relaxation, Melting and Crystallinity Behavior of UHMWPE-GUR 410-Medical Grade
,”
Mater. Des.
,
30
, pp.
4112
4119
.
6.
Chen
,
J.
,
Yang
,
W.
,
Yu
,
G. P.
,
Wang
,
M.
,
Ni
,
H. Y.
, and
Shen
K. Z.
, 2008, “
Continuous Extrusion and Tensile Strength of Self-reinforced HDPE/UHMWPE Sheet
,”
J. Mater. Process. Technol.
,
202
, pp.
165
169
.
7.
Wang
,
A.
,
Zeng
,
H.
,
Yau
,
S. S.
,
Essner
,
A.
,
Manely
,
M.
, and
Dumbleton
J.
, 2006, “
Wear, Oxidation and Mechanical Properties of a Sequentially Irradiated and Annealed UHMWPE in Total Joint Replacement
,”
J. Phys. D: Appl. Phys.
,
39
, pp.
3213
3219
.
8.
Baker
,
D. A.
,
Hastings
,
R. S.
, and
Pruitt
,
L.
, “
Study of the Fatigue Resistance of Chemical and Radiation Crosslinked Medical Grade Ultrahigh Molecular Weight Polyethylene
,”
J. Biomed. Mater. Res.
,
46
, pp.
573
581
.
9.
Robert
,
D. T.
,
Jorge
,
O. G.
, and
William
,
R.
, 1974, “
A Wear Resistant Material for Total Joint Replacement Tissue Biocompatibility of an Ultra-high Molecular Weight (UHMW) Polyethylene Graphite Composite
,”
J. Biomed. Mater. Res.
,
8
, pp.
231
250
.
10.
Xiong
,
D. S.
, and
Ge
,
S.R.
, 2001, “
Friction and Wear Properties of UHMWPE/Al2O3 Ceramic under Different Lubricating Conditions
,”
Wear
250
, pp.
242
245
.
11.
Xiong
,
D. S.
, 2005, “
Friction and Wear Properties of UHMWPE Composites Reinforced With Carbon Fiber
,”
Mater. Lett.
,
59
, pp.
175
179
.
12.
Lozano
,
K.
,
Shuying
,
Y.
, and
Jones
,
R.E.
, 2004, “
Nanofiber Toughened Polyethylene Composites
,”
Carbon
42
, pp.
2329
2331
.
13.
Johnson
,
B. B.
,
Santare
,
M. H.
,
Novotny
,
J. E.
, and
Advani
,
S. G.
, 2009, “
Wear Behavior of Carbon Nanotube/High Density Polyethylene Composites
,”
Mech. Mater.
,
41
, pp.
1108
1115
.
14.
Sui
,
G.
,
Zhong
,
W. H.
,
Ren
,
X.
,
Wang
,
X. Q.
, and
Yang
X. P.
, 2009, “
Structure, Mechanical Properties and Friction Behavior of UHMWPE/HDPE/Carbon Nanofibers
,”
Mater. Chem. Phys.
,
115
, pp.
404
412
.
15.
Tan
,
E.P.S.
, and
Lim
,
C. T.
, 2006, “
Mechanical Characterization of Nanofibers-A Review
,”
Composites Sci. Technol.
66
, pp.
1102
1111
.
16.
Liu
,
T.
,
Wood
,
W.
, and
Zhong
,
W. H.
, 2010, “
Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-density Polyethylene Composites
,”
Nanoscale Res. Lett.
, doi: .
17.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
W. J.
, and
Gun’ko
,
Y. K.
, 2006, “
Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube Polymer Composites
,”
Carbon
44
, pp.
1624
1652
.
18.
Sahoo
,
N. G.
,
Rana
,
S.
,
Cho
,
J. W.
,
Li
,
L.
, and
Chan
S. H.
, 2010, “
Polymer Nanocomposites Based on Functionalized Carbon Nanotubes
,”
Prog. Polymer Sci.
,
35
, pp.
837
867
.
19.
Abdelmouleh
,
M.
,
Boufi
,
S.
,
Belgacem
,
M. N.
, and
Dufresn
,
A.
, 2007, “
Short Natural-fiber Reinforced Polyethylene and Natural Rubber Composites: Effect of Silane Coupling Agents and Fibers Loading
,”
Composites Sci. Technol.
,
67
, pp.
1627
1639
.
20.
Jensen
,
R. E.
,
Palmese
,
G. R.
, and
McKnight
,
S. H.
, 2006, “
Viscoelastic Properties of Alkoxysilane-epoxy Interpenetrating Networks
,”
Int. J. Adhes. Adhes.
,
26
, pp.
103
115
.
21.
Plueddeman
,
E. P.
, 1982,
Silane Coupling Agents
,
Plenum
,
New York.
22.
Hashimoto
,
M.
,
Takadama
,
H.
,
Mizuno
,
M.
, and
Kokubo
,
T.
, 2006, “
Enhancement of Mechanical Strength of TiO2/High-density Polyethylene Composites for Bone Repair With Silane-coupling Treatment
,”
Mater. Res. Bull.
,
41
, pp.
515
524
.
23.
Herrera
,
N. N.
,
Letoffe
,
J. M.
,
Reymondc
,
J. P.
, and
Bourgeat-Lami
,
E.
, 2005, “
Silylation of Laponite Clay Particles With Monofunctional and Trifunctionalvinyl Alkoxysilanes
,”
J. Mater. Chem.
15
, pp.
863
871
.
24.
Santos
,
C. V.
,
Hernandez
,
A. M.
,
Cassou
,
M. L.
,
Castillo
,
A. A.
, and
Castano
,
V. M.
, 2002, “
Chemical Functionalization of Carbon Nanotubes through an Organosilane
,”
Nanotechnology
13
, pp.
495
498
.
25.
Vast
,
L.
,
Philippin
,
G.
,
Destree
,
A.
,
Moreau
,
N.
,
Fonseca
,
A.
,
Nagy
,
J. B.
, and
Delhalle
,
J.
and
Mekhalif
,
Z.
, 2004, “
Chemical Functionalization by A Luorinatedtrichlorosilane of Multi-walled Carbon Nanotubes
,”
Nanotechnology
15
, pp.
781
785
.
26.
Ma
,
P. C.
,
Kim
,
J. K.
, and
Tang
,
B. Z.
, 2006, “
Functionalization of Carbon Nanotubes Using a Silane Coupling Agent
,”
Carbon
44
, pp.
3232
3238
.
27.
Wood
,
W.
,
Kumar
,
S.
, and
Zhong
,
W. H.
, 2010, “
Synthesis of Organosilane-modified Carbon Nanofibers and Influence of Silane Coating Thickness on the Performance of Polyethylene Nanocomposites
,”
Macromol. Mater. Eng.
295
, pp.
1125
1135
.
28.
Xu
,
S.
,
Akchurin
,
A.
,
Tangpong
,
X. W.
,
Akhatov
,
I.
,
Liu
,
T.
,
Wood
,
W.
, and
Zhong
,
W.H.
, “
Tribological Behavior of High Density Polyethylene Nanocomposites With Silane Treated Carbon Nanofibers
,” ASME International Mechanical Engineering Congress and Exposition, Denver, CO, November 11–17, Report No. IMECE2011-62701.
29.
Fouad
,
H.
, and
Elleithy
,
R.
, 2011, “
High Density Polyethylene/Graphite Nano-composites for Total Hip Joint Replacements: Processing and in vitro Characterization
,”
J. Mech. Behav. Biomed. Mater.
4
, pp.
1376
1383
.
30.
Fouad
,
H.
, and
Elleithy
,
R.
, 2011, “
Characterization and Processing of High Density Polyethylene/Carbon Nanocomposites
,”
Mater. Des.
32
, pp.
1974
1980
.
31.
Tan
,
J. Z.
,
Chao
,
Y. J.
,
Van Zee
,
J. W.
,
Li
,
X. D.
,
Wang
,
X. N.
and
Yang
,
M.
, 2008, “
Assessment of Mechanical Properties of Fluoroelastomer and EPDM in A Simulated PEM Fuel Cell Environment by Microindentation Test
,”
Mater. Sci. Eng. A
496
, pp.
464
470
.
32.
Oral
,
E.
,
Beckos
,
C.
,
Lozynsky
,
A.
,
Malhi
,
A.
, and
Muratoglu
,
O.
, 2009, “
Improved Resistance to Wear and Fatigue Fracture in High Pressure Crystallized Vitamin E-containing Ultra-high Molecular Weight Polyethylene
,”
Biomaterials
30
, pp.
1870
1880
.
33.
Oral
,
E.
,
Ghali
,
B.
,
Rowell
,
S.
,
Micheli
,
B.
,
Lozynsky
,
A.
, and
Muratoglu
O.
, 2010, “
A Surface Crosslinked UHMWPE Stabilized by Vitamin E With Low Wear and High Fatigue Strength
,”
Biomaterials
31
, pp.
7051
7060
.
34.
Shi
,
L.
,
Sikavitsas
,
V.
, and
Striolo
,
A.
, 2011, “
Experimental Friction Coefficients for Bovine Cartilage Measured With A Pin-on-Disk Tribometer: Testing Configuration and Lubricant Effects
,”
Annals Biomed. Eng.
,
39
, pp.
132
146
.
35.
Chan
,
S. M. T.
,
Neu
,
C. P.
,
Komvopoulos
,
K.
,
Reddi
,
A. H.
, and
Di Cesare
,
P. E.
, 2011, “
Friction and Wear of Hemiarthroplasty Biomaterials in Reciprocating Sliding Contact With Articular Cartilage
,”
ASME J. Tribol.
,
133
, p.
041201
.
36.
Kane
,
S.
,
Ashby
,
P.
, and
Pruitt
,
L.
, 2010, “
Characterization and Tribology of PEG-like Coatings on UHMWPE for Total Hip Replacements
,”
J. Biomed. Mater. Res. Part A
92A
, pp.
1500
1509
.
37.
Gonzalez-Mora
,
V. A.
,
Hoffmann
,
M.
,
Stroosnijder
,
R.
, and
Gil
,
F. J.
, 2011, “
The Role of Hardness and Roughness on The Wear of Different CoCrMo Counterfaces on UHMWPE for Artificial Joints
,”
J. Biomed. Sci. Eng.
,
4
, pp.
651
656
.
38.
Crokett
,
R.
,
Roba
,
M.
,
Naka
,
M.
,
Gasser
,
B.
,
Delfosse
,
D.
,
Frauchiger
,
V.
, and
Spencer
N. D.
, 2009, “
Friction, Lubrication, and Polymer Transfer between UHMWPE and CoCrMo Hip-implant Materials: A Fluorescence Microscopy Study
,”
J. Biomed. Mater. Res. Part A
89A
, pp.
1011
1018
.
39.
Jedenmalm
,
A.
,
Affatato
,
S.
,
Taddei
,
P.
,
Leardini
,
W.
,
Gedde
,
U. W.
,
Fagnano
,
C.
, and
Viceconti
,
M.
, 2009, “
Effect of Head Surface Roughness and Sterilization on Wear of UHMWPE Acetabular Cups
,”
J. Biomed. Mater. Res. Part A
90A
, pp.
1032
1042
.
40.
Barrioz
,
J. C.
,
Mazuyer
,
D.
,
Tonck
,
A.
,
Kapsa
,
P.
, and
Chateauminois
A.
, 2006, “
Nano Scratch and Friction: An Innovative Approach to Understand The Tribological Behavior of Poly(amide) Fibers
,”
Tribol. Int.
,
39
, pp.
62
69
.
41.
Pettarin
,
V.
,
Churruca
,
M. J.
,
Felhos
,
D.
,
Joseph
,
K. K.
, and
Frontini
,
P. M.
, 2010, “
Changes in Tribological Performance of High Molecular Weight High Density Polyethylene Induced by the Addition of Molybdenum Disulphide Particles
,”
Wear
269
, pp.
31
45
.
42.
Kennedy
,
E. F.
, and
Van Citters
,
W. D.
, 2007, “
Lubrication and Wear of Artificial Knee Joint Materials in a Rolling/Sliding Tribotester
,”
ASME J. Tribol.
,
129
, pp.
326
335
.
43.
Zhang
,
X. R.
,
Pei
,
X. Q.
, and
Wang
,
Q. H.
, 2009, “
Friction and Wear Studies of Polyimide Composites Filled With Short Carbon Fiber and Graphite and Micro SiO2
,”
Mater. Des.
,
30
, pp.
4414
4420
.
44.
Supova
,
M.
,
Martynkova
,
G. S.
, and
Barabaszova
K.
, 2011, “
Effect of Nanofillers Dispersion in Polymer Matrices: A Review
,”
Sci. Adv. Mater.
,
3
, pp.
1
25
.
45.
Wang
,
Y. P.
,
Cheng
,
R. L.
,
Liang
L. L.
, and
Wang
,
Y. M.
, 2005, “
Study on the Preparation and Characterization of Ultra-high Molecular Weight Polyethylene-Carbon Nanotubes Composite Fiber
,”
Compos. Sci. Technol.
,
65
, pp.
793
797
.
46.
Dasari
,
A.
,
Yu
,
Z. Z.
, and
Mai
,
Y. W.
, 2009, “
Fundamental Aspects and Recent Progress on Wear/Scratch Damage in Polymer Nanocomposites
,”
Mater. Sci. Eng. R.
63
, pp.
31
80
.
47.
Rabinowicz
,
E.
, 1995,
Friction and Wear of Material
,
Wiley
,
New York.
48.
Holm
,
R.
, and
Gerbers
,
H.
, 1946,
Electrical Contacts
,
Almquist & Wiksells
,
Stockholm
.
49.
Wieleba
,
W.
, 2002, “
The Statistical Correlation of the Coefficient of Friction and Wear Rate of PTFE Composites With Steel Counterface Roughness and Hardness
,”
Wear
252
, pp.
719
729
.
50.
Lancaster
,
J. K.
, 1969, “
Abrasive Wear of Polymers
,”
Wear
14
, pp.
223
239
.
51.
Ge
,
S.
,
Wang
,
S.
, and
Huang
,
X. L
, 2009, “
Increasing the Wear Resistance of UHMWPE Acetabular Cups by Adding Natural Biocompatible Particles
,”
Wear
267
, pp.
770
776
.
You do not currently have access to this content.