An unstructured triangular mesh is successfully applied to the static simulations of air bearing sliders due to its flexibility, accuracy and mesh efficiency in capturing various complex rails and recess wall regions of air bearing surface, as well as fast simulation speed. This paper introduces a new implicit algorithm with second order time accuracy for the time-dependent simulations of the slider dynamics and available for the unstructured triangular mesh. The new algorithm is specially developed for the finite volume method. Since the algorithm has second order time accuracy, it provides the flexibility of applying various time steps while guaranteeing the numerical accuracy and convergence. Moreover, the unstructured triangular mesh is highly efficient and fewer nodes are used. Finally, due to the small variation of flying attitude between two neighboring time steps, it is especially efficient for iteration methods which are used in the finite volume method. As a result, the algorithm shows very fast speed in time-dependent dynamic simulations. Simulation studies are conducted on the flying dynamics of a thermal flying-height control slider after external excitations. The simulation results are compared with the simulation results obtained by the rectangular mesh based on the finite element method. It is observed that the simulation results are well correlated. The fast Fourier transform is also employed to analyze the air bearing frequencies. It is indicated that the new algorithm is of high efficiency and importance for time-dependent dynamic simulations.

References

1.
Meyer
,
D. W.
,
Kupinski
,
P. E.
, and
Liu
J. C.
, 1999, “
Slider with Temperature Responsive Transducer Positioning
,” US Patent No. 5,
991
, p.
113
.
2.
Li
,
H.
,
Zheng
,
H.
,
Fritzsche
,
J.
,
Amemiya
,
K.
, and
Talke
,
F. E.
, 2010, “
Simulation of Flying Height and Response Time of Thermal Flying Height Control Sliders With Thermal Insulators
,”
IEEE Trans. Magn.
,
46
(
6
), pp.
1292
1294
.
3.
Hua
,
W.
,
Liu
,
B.
,
Yu
,
S.
,
Zhou
,
W.
,
Myo
,
K. S.
, and
Ng
,
K. K.
, 2011, “
Thermal Protrusion Induced Air Bearing Frequency Variations
,”
Microsyst. Technol.
,
17
, pp.
891
896
.
4.
Canchi
,
S. V.
, and
Bogy
,
D. B.
, 2010, “
Slider Dynamics in the Lubricant-Contact Regime
,”
IEEE Trans. Magn.
,
46
(
3
), pp.
764
769
.
5.
Marchon
,
B.
, and
Olson
T.
, 2009, “
Magnetic Spacing Trends: From LMR to PMR and Beyond
,”
IEEE Trans. Magn.
,
45
(
10
), pp.
3608
3611
.
6.
Thornton
,
B. H.
,
Nayak
,
A.
, and
Bogy
,
D. B.
, 2002, “
Flying Height Modulation Due to Disk Waviness of Sub-5 nm Flying Height Air Bearing Sliders
,”
J. Tribol.
,
124
, pp.
762
770
.
7.
Hua
,
W.
,
Liu
,
B.
,
Yu
,
S.
, and
Zhou
,
W.
, 2010, “
Influences of Surface Topography on the Flying Performances of a Sub-3 nm Air Bearing Slider
,”
Jpn. J. Appl. Phys.
,
49
, p.
125202
.
8.
Mate
,
C. M.
,
Marchon
,
B.
,
Murthy
,
A. N.
, and
Kim
,
S.-H.
, 2010, “
Lubricant-Induced Spacing Increases at Slider–Disk Interfaces in Disk Drives
,”
Tribol. Lett.
,
37
, pp.
581
590
.
9.
Li
,
J.
,
Xu
,
J.
, and
Aoki
,
Y.
, 2009, “
Air Bearing Design to Prevent Reverse Flow from the Trailing Edge of the Slider
,”
Tribol. Lett.
,
35
, pp.
113
120
.
10.
Pit
,
R.
,
Marchon
,
B.
,
Meeks
,
S.
, and
Velidandla
,
V.
, 2001, “
Formation of Lubricant “Moguls” at the Head/Disk Interface
,”
Tribol. Lett.
,
10
(
3
), pp.
133
142
.
11.
Ma
,
X. D.
,
Tang
,
H.
,
Stirniman
,
M.
, and
Gui
,
J.
, 2002, “
Lubricant Thickness Modulation Induced by Head-Disk Dynamic Interactions
,”
IEEE Trans. Magn.
,
38
(
1
), pp.
112
117
.
12.
Dai
,
Q.
,
Hendriks
,
F.
, and
Marchon
,
B.
, 2004, “
Modeling the Washboard Effect at the Head/Disk Interface
,”
J. Appl. Phys.
,
96
(
1
), pp.
696
703
.
13.
Vakis
,
A. I.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
, 2011, “
Modeling Bearing and Shear Forces in Molecularly Thin Lubricants
,”
Tribol. Lett.
,
41
, pp.
587
595
.
14.
Li
,
J.
,
Liu
,
B.
,
Hua
,
W.
, and
Ma
Y.
, 2002, “
Effects of Intermolecular Forces on Deep Sub-10 nm Spaced Sliders
,”
IEEE Trans. Magn.
,
38
(
5
), pp.
2141
2143
.
15.
Hua
,
W.
,
Liu
,
B.
,
Yu
,
S.
, and
Zhou
W.
, 2007, “
Probability Model for the Intermolecular Force with Surface Roughness Considered
,”
Tribol. Int.
,
40
, pp.
1047
1055
.
16.
Xue
,
X.
, and
Polycarpou
,
A. A.
, 2007, “
An Improved Meniscus Surface Model for Contacting Rough Surfaces
,”
J. Colloid Interface Sci.
,
311
, pp.
203
211
.
17.
Lee
,
D. Y.
,
Lee
,
J.
,
Hwanga
,
J.
, and
Choa
,
S. H.
, 2007, “
Effect of Relative Humidity and Disk Acceleration on Tribocharge Build-Up at a Slider–Disk Interface
,”
Tribol. Int.
,
40
, pp.
1253
1257
.
18.
Fukui
,
S.
, and
Kaneko
R.
, 1988, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation
,”
J. Tribol.
,
110
, pp.
253
261
.
19.
White
,
J. W.
, and
Nigam
,
A.
, 1980, “
A Factored Implicit Scheme for the Numerical Solution of the Reynolds Equation at Very Low Spacing
,”
Lubr. Technol.
,
102
, pp.
80
85
.
20.
Mitsuya
,
Y.
, 1979, “
Molecular Mean Free Path Effects in Gas Lubricated Slider Bearings (An Application of the Finite Element Solution)
,”
Bull. JSME
,
22
(
108
), pp.
863
870
.
21.
Mitsuya
,
Y.
, and
Kaneko
,
R.
, 1981, “
Molecular Mean Free Path Effects in Gas Lubricated Slider Bearings (2nd Report, Experimental Studies)
,”
Bull. JSME
,
24
(
187
), pp.
236
242
.
22.
Odaka
,
T.
, and
Tanaka
,
K.
, 1987, “
Dynamic Characteristics of Air-Lubricated Slider Bearings for Magnetic Disk Files (Calculation by Finite Element Method)
,”
JSME Int. J.
,
30
(
262
), pp.
638
645
.
23.
Bhargava
,
P.
, and
Bogy
,
D. B.
, 2009, “
An Efficient FE Analysis for Complex Low Flying Air-Bearing Slider Designs in Hard Disk Drives—Part I: Static Solution
,”
J. Tribol.
,
131
, p.
031902
.
24.
Hua
,
W.
,
Tan
,
B.
,
He
,
Y.
,
Wang
,
C.
, and
Liu
,
B.
, 1997, “
A Novel Implicit Algorithm for the Simulation of Time Domain Head/Disk Dynamics in Disk Fils
,”
IEEE Trans. Magn.
,
33
(
5
), pp.
3127
3129
.
25.
Liu
,
B.
,
Zhang
,
M.
,
Yu
,
S.
,
Hua
,
W.
,
Ma
,
Y.
,
Zhou
,
W.
,
Gonzaga
,
L.
, and
Man
,
Y.
, 2009, “
Lube-Surfing Recording and Its Feasibility Exploration
,”
IEEE Trans. Magn.
,
45
(
2
), pp.
899
904
.
26.
White
,
J.
, 2011, “
Numerical Solution of the Boltzmann Based Lubrication Equation for the Air-Bearing Interface Between a Skewed Slider and a Disk With Discrete Data Tracks
,”
J. Tribol.
,
133
, p.
021901
.
27.
Hua
,
W.
,
Liu
,
B.
,
Yu
,
S.
, and
Zhou
W.
, 2009, “
Nanoscale Roughness Contact in a Slider-Disk Interface
,”
Nanotechnology
,
20
, p.
285710
.
28.
Lu
,
S.
, 1997, “
Numerical Simulation of Slider Air Bearings
,” Ph.D. thesis, University of California, Berkeley, CA.
29.
Wu
,
L.
, and
Bogy
,
D. B.
, 2000, “
Unstructured Adaptive Triangular Mesh Generation Techniques and Finite Volume Schemes for the Air Bearing Problem in Hard Disk Drives
,”
J. Tribol.
,
122
, pp.
761
770
.
30.
Patankar
,
S. V.
,
Numerical Heat Transfer and Fluid Flow
(
McGraw-Hill
,
New York
, 1980).
31.
Zhou
,
W.
,
Liu
,
B.
,
Yu
,
S.
, and
Hua
W.
, 2009, “
Numerical Studies of Heat Transfer in Rarefied Gases at Head-Disk Interface
,”
Jpn. J. Appl. Phys.
,
48
, p.
105005
.
You do not currently have access to this content.