Magnetorheological (MR) fluids are fluids whose properties vary in response to an applied magnetic field. Such fluids are typically composed of microscopic iron particles (~1-20μm diameter, 20-40% by volume) suspended in a carrier fluid such as mineral oil or water. MR fluids are increasingly proposed for use in various mechanical system applications, many of which fall in the domain of tribology, such as smart dampers and clutches, prosthetic articulations, and controllable polishing fluids. The goal of this study is to present an overview of the topic to the tribology audience, and to develop an MR fluid model from the microscopic point of view using the discrete element method (DEM), with a long range objective to better optimize and understand MR fluid behavior in such tribological applications. As in most DEM studies, inter-particle forces are determined by a force-displacement law and trajectories are calculated using Newton’s second law. In this study, particle magnetization and magnetic interactions between particles have been added to the discrete element code. The global behavior of the MR fluid can be analyzed by examining the time evolution of the ensemble of particles. Microscopically, the known behavior is observed: particles align themselves with the external magnetic field. Macroscopically, averaging over a number of particles and a significant time interval, effective viscosity increases significantly when an external magnetic field is applied. These preliminary results would appear to establish that the DEM is a promising method to study MR fluids at the microscopic and macroscopic scales as an aid to tribological design.

References

References
1.
Carlson
,
J. D.
, and
Toscano
,
J.
, 2007, “
MR Fluids through Thick and Thin
,”
Motion Syst. Des.
,
49
(
6
), pp.
52
53
.
2.
Ahmadian
,
M.
, and
Sandu
,
C.
, 2008, “
An Experimental Evaluation of Magneto-Rheological Front Fork Suspensions for Motorcycle Applications
,”
Int. J. Veh. Syst. Model. Test
,
3
(
4
), pp.
296
311
.
3.
Zheng
,
G.
,
Huang
,
Y.
, and
Gan
,
B.
, 2010, “
The Application of MR Fluid Dampers to the Vibrating Screen to Enhance Screening Efficiency
,”
Adv. Mater. Res.
,
97–101
, pp.
2628
2633
.
4.
Huan
,
R. H.
,
Li
,
X. P.
,
Wu
,
Y. J.
, and
Zhu
,
W. Q.
, 2010, “
Optimal Bounded Semi-Active Control of Hysteretic Systems with MR Damper
,”
Adv. Struct. Eng.
,
13
(
6
), pp.
1199
1205
.
5.
Kim
,
E.-S.
,
Choi
,
S.-B.
,
Park
,
Y. G.
, and
Lee
,
S.
, 2010, “
Temperature Control of an Automotive Engine Cooling System Utilizing a Magneto-Rheological Fan Clutch
,”
Smart Mater. Struct.
,
19
(
10
), p.
101001
.
6.
Nguyen
,
Q. H.
, and
Choi
,
S. B.
, 2010, “
Optimal Design of an Automotive Magnetorheological Brake Considering Geometric Dimensions and Zero-Field Friction Heat
,”
Smart Mater. Struct.
,
19
(
11
), p.
115024
.
7.
Johansson
,
J. L.
,
Sherrill
,
D. M.
,
Riley
,
P. O.
,
Bonato
,
P.
, and
Herr
,
H.
, 2005, “
A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices
,”
Am. J. Phys. Med. Rehabil.
,
84
(
8
), pp.
563
575
.
8.
Jonsdottir
,
F.
,
Thorarinsson
,
E. W. T.
,
Paisson
,
H.
, and
Gudmundsson
,
K. H.
, 2009, “
Influence of Parameter Variations on the Braking Torque of a Magnetorheological Prosthetic Knee
,”
J. Intell. Mater. Syst. Struct.
,
20
(
6
), pp.
659
667
.
9.
Herr
,
H.
, 2005, “
Biohybrid limbs to Restore Arm, Leg function to Amputees
,”
Adv. Mater. Processes
,
163
(
4
), p.
56
.
10.
Iordanoff
,
I.
,
Fillot
,
N.
, and
Berthier
,
Y.
, 2005. “
Numerical Study of a Thin Layer of Cohesive Particles under Plane Shearing
,”
Powder Technol.
,
159
, pp.
46
54
.
11.
Fillot
,
N.
,
Iordanoff
,
I.
, and
Berthier
,
Y.
, 2005, “
Simulation of Wear through a Mass Balance
,”
Trans. ASME J. Tribol
,
127
(
1
), pp.
230
237
.
12.
Winslow
,
W. M.
, 1949, “
Induced Fibration of Suspensions
,”
J. Appl. Phys
,.
20
, pp.
1137
1140
.
13.
Halsey
,
T.
, 1992, “
Electrorheological Fluids
,”
Science
,
258
, pp.
761
766
.
14.
Bonnecaze
,
R. T.
, and
Brady
,
F.
, 1992, “
Dynamic Simulation of an Electrorheological Fluid
,”
J. Chem. Phys.
,
96
(
3
), pp.
2183
2202
.
15.
Bonnecaze
,
R. T.
, and
Brady
,
F.
, 1992, “
Yield Stresses in Electrorheological Fluids
,”
J. Rheol.
,
36
(
1
), pp.
73
115
.
16.
Klingenberg
,
D. J.
,
Swol
,
F.
, and
Zukoski
,
C. F.
, 1989, “
Dynamic Simulation of Electrorheological Suspension
,”
J. Chem. Phys.
,
91
(
12
), pp.
7688
7895
.
17.
Klingenberg
,
D. J.
,
Swol
,
F.
, and
Zukoski
,
C. F.
, 1991, “
The Small Shear Rate Response of Electrorheological Suspension. I. Simulation in the Point-dipole Limit
,”
J. Chem. Phys.
,
94
(
9
), pp.
6160
6169
.
18.
Klingenberg
,
D. J.
,
Swol
,
F.
, and
Zukoski
,
C. F.
, 1991, “
The Small Shear Rate Response of Electrorheological Suspension. II. Extension Beyond the Point-dipole Limit
,”
J. Chem. Phys.
,
94
(
9
), pp.
6170
6178
.
19.
Parthasarathy
,
M.
, and
Klingenberg
,
D. J.
, 1999, “
Large Amplitude Oscillatory Shear of ER Suspensions
,”
J. Non-Newtonian Fluid Mech.
,
81
, pp.
83
104
.
20.
Chen
,
T. Y.
,
Briscoe
,
B. J.
, and
Luckham
,
P. F.
, 1995, “
Microstructural Studies of Electro-Rheological Fluids under Shear
,”
J. Chem. Soc. Faraday Trans.
,
91
(
12
), pp.
1787
–1794–
104
.
21.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids, Fluid Mechanics.
J. Wiley and Sons
,
New York
, Vol.
1
.
22.
Tichy
,
J.
, 1991, “
Hydrodynamic Lubrication Theory for the Bingham Flow Model
,”
J. Rheol.
,
35
(
4
), pp.
477
496
.
23.
Rankin
,
P. J.
,
Ginder
,
J. M.
, and
Klingenberg
,
D. J.
,1998, “
Electro- and Magneto-Rheology
,”
Curr. Opin. Colloid Interface Sci.
,
3
(
4
), pp.
373
381
.
24.
de Vicente
,
J.
,
López-López
,
M. T.
,
Durán
,
J. D. G.
, and
González-Caballero
,
F.
, 2004, “
Shear Flow Behavior of Confined Magnetorheological Fluids at Low Magnetic Field Strengths
,”
Rheol. Acta
,
44
, pp.
94
103
.
25.
Genç
,
S.
, and
Phulé
,
P. P.
, 2002, “
Rheological Properties of Magnetorheological Fluids
,”
Smart Mater. Struct.
,
11
, pp.
140
146
.
26.
Klingenberg
,
D. J.
,
Olk
,
C. H.
,
Golden
,
M. A.
, and
Ulicny
,
J. C.
, 2010, “
Effects of Nonmagnetic Interparticle Forces on Magnetorheological Fluids
,”
J. Phys.: Condens. Matter
,
22
, p.
324101
.
27.
Claracq
,
J.
,
Sarrazin
,
J.
, and
Monfort
,
J.
, 2004, “
Viscoelastic Properties of Magnetorheological Fluids
,”
Rheol. Acta
,
43
, pp.
38
49
.
28.
Bird
,
R. B.
,
Curtiss
,
C.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory
,
J. Wiley and Sons
,
New York
.
29.
Larson
,
R. G.
, 1999,
The Structure and Rheology of Complex Fluids
,
Oxford Press
,
New York
.
30.
Yi
,
C.
,
Peng
,
X.
, and
Zhao
,
C.
, 2010,“
A Magnetic-Dipoles-Based Micro-Macro Constitutive Model for MRFs subjected to Shear Deformation
,”
Rheol. Acta
,
49
, pp.
815
825
.
31.
Furst
,
E. M.
, and
Gast
,
A. P.
, 2000, “
Micromechanics of Magnetorheological Suspensions
,”
Phys. Rev. E
,
61
(
6
), pp.
6732
6739
.
32.
Jang
,
K.-I.
,
Seok
,
J.
,
Min
,
B.-K.
, and
Lee
,
S. J.
, 2009, “
Behavioral Model for Magnetorheological Fluid under a Magnetic Field using Lekner Summation Method
,”
J. Magn. Magn. Mater.
,
321
, pp.
1167
1176
.
33.
Ginder
,
J. M.
, and
Davis
,
L. C.
, 1994, “
Shear Stresses in Magnetorheological Fluids: Role of Magnetic Saturation
,”
Appl. Phys. Lett.
,
26
, pp.
3410
3412
.
34.
Kroger
,
M.
,
Ilg
,
P.
, and
Hess
,
S.
, 2003, “
Magnetoviscous Model Fluids
,”
J. Phys. Condens. Matter
,
15
(
15
), pp.
S1403
S1423
.
35.
Han
,
K.
,
Feng
,
Y. T.
, and
Owen
,
D. R. J.
, 2010, “
Three-Dimensional Modeling and Simulation of Magnetorheological Fluids
,”
Int. J. Numer. Methods Eng.
,
84
(
11
), pp.
1273
1302
.
36.
Melle
,
S.
, Calderón, O. G.,
Rubio
,
M. A.
, and
Fuller
,
G. G.
, 2003, “
Microstructure Evolution in Magnetorheological Suspensions Governed by Mason Number
,”
Phys. Rev. E
,
68
(
11
), p.
041503
.
37.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford Science Publications
,
Oxford
.
38.
Happel
,
J.
, and
Brenner
,
H.
, 1973,
Low Reynolds Number Hydrodynamics
,
Noordhoff International
,
Leyden
.
39.
du Trémolet de Lacheisserie
,
E.
, 1999,
Magnétisme
,
Grenoble Sciences
,
Grenoble
.
40.
Griffiths
,
D.
, 1989,
Introduction to Electrodynamics
,
Prentice-Hall
,
Englewood Cliffs NJ
.
You do not currently have access to this content.