Steady-state smooth surface hydrodynamic lubrications of a pocketed pad bearing, an angularly grooved thrust bearing, and a plain journal bearing are simulated with the mass-conservation model proposed by Payvar and Salant. Three different finite difference schemes, i.e., the harmonic mean scheme, arithmetic mean scheme, and middle point scheme, of the interfacial diffusion coefficients for the Poiseuille terms are investigated by using a uniform and nonuniform set of meshes. The research suggests that for the problems with continuous film thickness and pressure distributions, the results obtained with these numerical schemes generally well agree with those found in the literatures. However, if the film thickness is discontinuous while the pressure is continuous, there may be an obvious deviation. Compared with both the analytical solution and other two schemes, the harmonic mean scheme may overestimate or underestimate the pressure. In order to overcome this problem artificial nodes should be inserted along the wall of the bearings where discontinuous film thickness appears. Moreover, the computation efficiency of the three solvers, i.e., the direct solver, the line-by-line the tridiagonal matrix algorithm (TDMA) solver, and the global successive over-relaxation (SOR) solver, are investigated. The results indicate that the direct solver has the best computational efficiency for a small-scale lubrication problem (around 40 thousand nodes). TDMA solver is more robust and requires the least storage, but the SOR solver may work faster than TDMA solver for thrust bearing lubrication problems. Numerical simulations of a group of grooved thrust bearings were conducted for the cases of different outer and inner radii, groove depth and width, velocity, viscosity, and reference film thickness. A curve fitting formula has been obtained from the numerical results to express the correlation of load, maximum pressure, and friction of an angularly grooved thrust bearing in lubrication.

References

References
1.
Jakobsson
,
B.
, and
Floberg
,
L.
, 1957, “
The Finite Journal Bearing Considering Vaporization
,”
Transactions of Chalmers University of Technology
,
Guthenberg
,
Sweden
, pp.
190
198
.
2.
Olsson
,
K. O.
, 1965, “
Cavitation in Dynamically Loaded Bearing
,”
Transactions of Chalmers University of Technology
,
Guthenberg
,
Sweden
, pp.
308
320
.
3.
Andrés
,
L. A. S.
, 2006, “
Notes06. Liquid Cavitation in Fluid Film Bearings
,”
Class Notes
,
Texas A&M University
,
College Station, Texas
, http://rotorlab.tamu.edu/me626/Notes_pdf/Notes06%20Liquid%20cavitation%20model.pdfhttp://rotorlab.tamu.edu/me626/Notes_pdf/Notes06%20Liquid%20cavitation%20model.pdf.
4.
Elrod
,
H. G.
, and
Adams
M. L.
, 1974, “
A Computer Program for Cavitation and Starvation Problems
,”
Cavitation and Related Phenomena in Lubrication
,
Mechanical Engineering Publication
,
New York
, pp.
37
41
.
5.
Elrod
,
H. G.
, 1981, “
A Cavitation Algorithm
,”
ASME J. Tribol.
,
103
, pp.
350
354
.
6.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
, 2011, “
A Modification of the Switch Function in the Elrod Cavitation Algorithm
,”
ASME J. Tribol.
,
133
, pp.
024501
-1–024501-
4
.
7.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, Jr.
, 1989, “
Development and Evaluation of a Cavitation Algorithm
,”
STLE Tribol. Trans.
,
32
(
2
), pp.
225
233
.
8.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, Jr.
, 1989, “
Numerical Prediction of Cavitation in Noncircular Journal Bearings
,”
Tribol. Trans.
,
32
(
2
), pp.
215
224
.
9.
Woods
,
C. M.
, and
Brewe
,
D. E.
, 1989, “
The Solution of the Elrod Algorithm for a Dynamically Loaded Journal Bearing Using Multigrid Techniques
,”
ASME J. Tribol.
,
111
, pp.
302
308
.
10.
Ausas
,
R. F.
,
Jai
,
M.
, and
Buscaglia
,
G. C.
, 2009, “
Mass-Conservation Algorithm for Dynamical Lubrication Problems With Cavitation
,”
ASME J. Tribol.
,
131
, pp.
031702
-1–031702-
7
.
11.
Goenka
,
P. K.
, 1984, “
Dynamically Loaded Journal Bearings: Finite Element Method Analysis
,”
ASME J. Tribol.
,
106
, pp.
429
439
.
12.
Kumar
,
A.
, and
Booker
,
J. F.
, 1991, “
A Finite Element Cavitation Algorithm
,”
ASME J. Tribol.
,
113
, pp.
276
286
.
13.
Bonneau
,
D.
,
Guines
,
D.
,
Frene
,
J.
, and
Toplosky
,
J.
, 1995, “
EHD Analysis, Including Structural Inertia Effects and a Mass-conserving Cavitation Model
,”
ASME J. Tribol.
,
117
, pp.
540
547
.
14.
Shi
,
F. H.
, and
Paranjpe
,
R.
, 2002, “
An Implicit Finite Element Cavitation Algorithm
,”
Comput. Model. Eng. Sci.
,
3
(
4
), pp.
507
515
, www.techscience.com/doi/10.3970/cmes.2002.003.507.pdf.
15.
Braun
,
M. J.
, and
Hanon
,
W. M.
, 2010, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
224
, pp.
839
863
.
16.
Payvar
,
P.
, and
Salant
,
R. F.
, 1992, “
A Computational Method for Cavitation in a Wavy Mechanical Seal
,”
ASME J. Tribol.
,
114
, pp.
199
204
.
17.
Bavel Van
,
P. G. M.
,
Ruiji
,
T. A. M.
,
Leeuwem Van
,
H. J.
, and
Muijderman
,
E. A.
, 1996, “
Upstream Pumping of Radial Lip Seals by Tangentially Deforming, Rough Seal Surfaces
,”
ASME J. Tribol.
,
118
, pp.
266
275
.
18.
Hong
J. C.
, 2005, “
Numerical Models for Scoring Failure of Flexible Metal to Metal Face Seals
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
19.
To
,
H. Y.
, and
Sadeghi
,
F.
, 2001, “
Groove Effects on Thrust Washer Lubrication
,”
ASME J. Tribol.
,
123
, pp.
295
304
.
20.
Wang
,
Y. S.
,
Wang
,
Q. J.
, and
Lin
,
C.
, 2003, “
Mixed Lubrication of Coupled Journal-Thrust-Bearing Systems Including Mass Conserving Cavitation
,”
ASME J. Tribol.
,
125
, pp.
748
755
.
21.
Meng
,
F. M.
,
Cen
,
S. Q.
,
Hu
,
Y. Z.
, and
Wang
,
H.
, 2009, “
On Elastic Deformation, Inter-asperity Cavitation and Lubricant Thermal Effects on Flow Factors
,”
Tribol. Int.
,
42
, pp.
260
274
.
22.
Shi
,
F. H.
, and
Salant
,
R. F.
, 1999, “
A Soft Mixed-elastohydrodynamic Lubrication Model With Inter-asperity Cavitation and Surface Shear Deformation
,”
ASME J. Tribol.
,
122
, pp.
308
316
.
23.
Shi
,
F. H.
, 1999, “
A Deterministic Mixed-elastohydrodynamic Lubrication Model and Analysis of Lip Seal Performance
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
24.
Bayada
,
G.
,
Martin
,
S.
, and
Vázquez
,
C.
, 2006, “
Micro-roughness Effects in (Elasto) Hydrodynamic Lubrication Including a Mass-flow Preserving Cavitation Model
,”
Tribol. Int.
,
39
(
12
), pp.
1707
1718
.
25.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
26.
Lu
,
C. J.
, and
Chiou
,
S. S.
, 2003, “
On the Interface Diffusion Coefficient for Solving Reynolds Equation by Control Volume Method
,”
Tribol. Int.
,
36
, pp.
929
933
.
27.
Peng
,
J. P.
, and
Hardie
,
C. E.
, 1995, “
A Finite Element Scheme for Determining the Shaped Rail Slider Flying Characteristics With Experimental Confirmation
,”
ASME J. Tribol.
,
117
, pp.
358
364
.
28.
Gohar
,
G.
, 2001,
Elastohydrodynamics
,
2nd ed.
,
Imperial College Press
,
London
.
29.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
, 2000,
Multilevel Methods in Lubrication
,
Elsevier
,
New York
.
30.
Pinkus
,
O.
, and
Sternlicht
,
B.
, 1961,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
31.
Fujiwara
,
T.
,
Hirata
,
K.
,
Ueno
,
M.
, and
Nimura
,
T.
, 2003, “
On Aerodynamic Characteristics of a Hybrid-sail With Square Soft Sail
,”
Proceedings of the Thirteen International Offshore and Polar Engineering Conference
,
Honolulu, Hawaii
, May 25–30, pp.
326
332
.
32.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1992,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
,
Cambridge University, Cambridge
,
England
.
33.
Yang
,
P.
, and
Shen
J.
, 1996, “
On the Theory of Time-dependent Micro-TEHL for a Non-Newtonian Lubrication in Line Contacts
,”
Lubr. Sci.
,
8
(
3
), pp.
297
312
.
34.
Lebeck
,
A. O.
, 1991,
Principle and Design of Mechanical Face Seals
,
Wiley
,
New York
.
35.
Liu
,
J.
, 2012, “
On Boundary Conditions in Lubrication With Two Dimensional Analytical Solutions
,”
Tribol. Int.
,
48
(
1
), pp.
182
190
.
36.
Cameron
,
A.
, and
Wood
,
W. L.
, 1947, “
The Full Journal Bearing
,”
Proc. Inst. Mech. Eng.
,
161
, pp.
59
72
.
37.
Olver
,
A. V.
,
Fowell
,
M. T.
,
Spikes
,
H. A.
, and
Pegg
,
I. G.
, 2006, “
Inlet Suction,’ A Load Support Mechanism in Non-convergent, Pocketed, Hydrodynamic Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
220
(
2
), pp.
105
108
.
38.
Fowell
,
M. T.
,
Olver
,
A. V.
,
Gosman
,
A. D.
,
Spikes
,
H. A.
, and
Pegg
,
I.
, 2007, “
Entrainment and Inlet Suction: Two Mechanisms of Hydrodynamic Lubrication in Textured Bearings
,”
ASME J. Tribol.
,
129
(
2
), pp.
336
347
.
39.
Taguchi
,
G.
, and
Konishi
,
S.
, 1987,
Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering
,
American Supplier Institute Press
,
Dearborn, MI.
40.
Arghir
,
M.
,
Alsayed
A.
, and
Nicolas
D.
, 2002, “
The Finite Volume Solution of the Reynolds Equation of Lubrication With Film Discontinuities
,”
Int. J. Mech. Sci.
,
44
, pp.
2119
2132
.
41.
Jackson
,
R. L.
, and
Green
,
I.
, 2008, “
The Thermoelastic Behavior of Thrust Washer Bearings Considering Mixed Lubrication, Asperity Contact, and Thermoviscous Effects
,”
Tribol. Trans.
,
51
, pp.
19
32
.
You do not currently have access to this content.