The coefficient of friction (CoF) is a very important factor for designing, operating, and maintaining the wheel-rail system. In the real world, accurate estimation of the CoF at the wheel-rail interface is difficult due to the effects of various uncertain parameters, e.g., wheel and rail materials, rail roughness, contact patch size, and so on. In this study, a stochastic analysis using polynomial chaos (poly-chaos) theory is performed with the newly developed 3D dry CoF model at the wheel-rail contact. The wheel-rail system is modeled as a mass-spring-damper system. Stochastic analyses with one uncertainty, combinations of two uncertainties, and a combination of three uncertainties are performed. The probability density function (PDF) results for stick CoF, slip CoF, and combined (total) CoF are presented. The stochastic analysis results show that the total CoF PDF before 1 s is dominantly affected by the stick phenomenon, whereas the slip dominantly influences the total CoF PDF after 1 s. The CoF PDFs obtained from simulations with combinations of two and three uncertain parameters have wider PDF ranges than those obtained for only one uncertain parameter. The current work demonstrates that the CoF is strongly affected by the stochastic variation of dynamic parameters. Thus, the PDF distribution of the CoF could play a very important role in the design of the wheel-rail system.

References

1.
Bucher
,
F.
,
Dmitriev
,
A. I.
,
Ertz
,
M.
,
Knothe
,
K.
,
Popov
,
V. L.
,
Psakhie
,
S. G.
, and
Shilko
,
E. V.
, 2006, “
Multiscale Simulation of Dry Friction in Wheel/Rail Contact
,”
Wear
,
261
, pp.
874
884
.
2.
Soom
,
A.
, and
Chen
,
J.
, 1986, “
Simulation of Random Surface Roughness-Induced Contact Vibrations at Hertzian Contacts During Steady Sliding
,”
ASME J. Tribol.
,
108
, pp.
123
127
.
3.
Wu
,
W. X.
,
Brickle
,
B. V.
,
Smith
,
J. H.
, and
Luo
,
R. K.
, 1998, “
An Investigation Into Stick-Slip Vibration on Vehicle/Track Systems
,”
Veh. Syst. Dyn.
,
30
, pp.
229
236
.
4.
Hess
,
D. P.
, and
Soom
,
A.
, 1990, “
Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities
,”
ASME J. Tribol.
,
112
, pp.
147
152
.
5.
Hess
,
D. P.
,
Soom
,
A.
, and
Kim
,
C. H.
, 1992, “
Normal Vibrations and Friction at a Hertzian Contact Under Random Excitation: Theory and Experiments
,”
J. Sound Vib.
,
153
, pp.
491
508
.
6.
Wu
,
T. X.
, and
Thompson
,
D. J.
, 2004, “
Wheel/Rail Non-linear Interactions With Coupling Between Vertical and Lateral Directions
,”
Veh. Syst. Dyn.
,
41
, pp.
27
49
.
7.
Lee
,
H.
,
Sandu
,
C.
, and
Holton
,
C.
, “
Dynamic Model for the Wheel-Rail Contact Friction
,”
Veh. Syst. Dyn.
(in press).
8.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1990, “
Polynomial Chaos in Stochastic Finite Element
,”
ASME J. Appl. Mech.
,
57
, pp.
197
202
.
9.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991, “
Spectral Stochastic Finite-Element Formulation for Reliability Analysis
,”
J. Eng. Mech.
,
117
, pp.
2351
2372
.
10.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1993, “
A Stochastic Galerkin Expansion for Nonlinear Random Vibration Analysis
,”
Probab. Eng. Mech.
,
8
, pp.
255
264
.
11.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 2003,
Stochastic Finite Elements
,
Dover
,
Mineola, NY
.
12.
Ghanem
,
R. G.
, and
Brzkala
,
W.
, 1996, “
Stochastic Finite Element Analysis of Soil Layers With Random Interface
,”
J. Eng. Mech.
,
122
, pp.
361
369
.
13.
Ghanem
,
R. G.
, and
Dham
,
S.
, 1998, “
Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media
,”
Transport Porous Med.
,
32
, pp.
239
262
.
14.
Ghanem
,
R. G.
, 1998, “
Probabilistic Characterization of Transport in Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
,
158
, pp.
199
220
.
15.
Ghanem
,
R. G.
, 1999, “
Stochastic Finite Elements for Heterogeneous Media With Multiple Random Non-Gaussian Properties
,”
J. Eng. Mech.
,
125
, pp.
26
40
.
16.
Maitre
,
O. P. L.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
, 2001, “
A Stochastic Projection Method for Fluid Flow. I. Basic Formulation
,”
J. Comput. Phys.
,
173
, pp.
481
511
.
17.
Maitre
,
O. P. L.
,
Reagan
,
M. T.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
, 2002, “
A Stochastic Projection Method for Fluid Flow. II. Random Process
,”
J. Comput. Phys.
,
181
, pp.
9
44
.
18.
Reagan
,
M. T.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
, 2003, “
Uncertainty Quantification in Reacting Flow Simulations Through Non-intrusive Spectral Projection
,”
Combust. Flame
,
132
, pp.
545
555
.
19.
Geneser
,
S. E.
,
Choe
,
S.
,
Kirby
,
R. M.
, and
MacLeod
,
R. S.
, 2005, “
2-D Stochastic Finite Element Study of the Influence of Organ Conductivity in ECG
,”
Inter. J. Bioelectromag.
,
7
, pp.
1
4
.
20.
Isukapalli
,
S. S.
, and
Georgopoulos
,
P. G.
, 1997, “
Computationally Efficient Methods for Uncertainty Analysis of Environmental Models
,” Proceedings of the A&WMA Specialty Conference on Computing in Environmental Resource Management, pp.
656
665
.
21.
Isukapalli
,
S. S.
, and
Georgopoulos
,
P. G.
, 1998, “
Development and Application of Methods for Assessing Uncertainty in Photochemical Air Quality Problems
,” Interim Report, prepared for the U.S. EPA National Exposure Research Laboratory under Cooperative Agreement CR 823467.
22.
Isukapalli
,
S. S.
,
Roy
,
A.
, and
Georgopoulos
,
P. G.
, 1998, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Anal.
,
18
, pp.
351
363
.
23.
Knio
,
O. M.
, and
Maitre
,
O. P. L.
, 2006, “
Uncertainty Propagation in CFD Using Polynomial Chaos Decomposition
,”
Fluid Dyn. Res.
,
38
, pp.
616
640
.
24.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
,
24
, pp.
619
644
.
25.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
Modeling Uncertainty in Steady-state Diffusion Problems via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
4927
4928
.
26.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Dynamic Systems with Uncertainties. Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
, pp.
1
23
.
27.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Dynamic Systems with Uncertainties. Part II: Numerical Applications
,”
Multibody Syst. Dyn.
,
15
, pp.
241
262
.
28.
Li
,
L.
, 2008, “Treatment of Uncertainties in Vehicle and Terramechanics Systems Using a Polynomial Chaos Approach,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
29.
Sandu
,
C.
,
Sandu
,
A.
, and
Li
,
L.
, 2006, “
Stochastic Modeling of Terrain Profiles and Soil Parameters
,”
SAE International Journal of Commercial Vehicles
,
114
, pp.
211
220
.
30.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2009, “
Parameter Estimation for Mechanical Systems Via an Explicit Representation of Uncertainty
,”
Eng. Comput.
,
26
, pp.
541
569
.
31.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2010, “
Polynomial Chaos-Based Parameter Estimation Methods Applied to a Vehicle System
,”
Proc. Inst. Mech. Eng., Part K
,
224
, pp.
59
81
.
32.
Blanchard
,
E.
, 2010, “Polynomial Chaos Approaches to Parameter Estimation and Robust Control Design for Mechanical Systems With Uncertain Parameters,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
33.
Remington
,
P. J.
, 1987, “
Wheel/Rail Rolling Noise. I: Theoretical Analysis
,”
J. Acoust. Soc. Am.
,
81
, pp.
1805
1823
.
34.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
, pp.
137
167
.
35.
Grassie
,
S. L.
,
Gregory
,
R. W.
,
Harrison
,
D.
, and
Johnson
,
K. L.
, 1982, “
The Dynamic Response of Railway Track to High Frequency Vertical Excitation
,”
J. Mech. Eng. Sci.
,
24
, pp.
77
90
.
36.
Iwnicki
,
S.
, 2006,
Handbook of Railway Vehicle Dynamics
,
CRC
,
Boca Raton, FL
.
37.
Nielsen
,
J. C. O.
, 2008, “
Book Chapter—Rail Roughness Level Assessment Based on High-Frequency Wheel-Rail Contact Force Measurements
,” Proceedings of the 9th International Workshop on Railway Noise
,
Vol.
99
, pp.
355
362
.
38.
Wu
,
T. X.
, and
Thompson
,
D. J.
, 2000, “
Theoretical Investigation of Wheel/Rail Non-Linear Interaction Due to Roughness Excitation
,”
Veh. Syst. Dyn.
,
34
, pp.
261
282
.
39.
Suzuki
,
T.
,
Ishida
,
M.
,
Abe
,
K.
, and
Koro
,
K.
, 2005, “
Measurement on Dynamic Behavior of Track Near Rail Joints and Prediction of Track Settlement
,”
Q. Rep. Railway Technol. Res. Inst.
,
46
, pp.
124
129
.
40.
Iwnicki
,
S.
, 1999,
The Manchester Benchmarks for Rail Vehicle Simulation
,
Swets & Zeitlinger, B. V. Lisse
,
The Netherlands
.
41.
Polycarpou
,
A. A.
, and
Soom
,
A.
, 1996, “
A Two Component Mixed Friction Model for a Lubricated Line Contact
,”
ASME J. Tribol.
,
118
, pp.
183
189
.
42.
Kalker
,
J. J.
, 1990,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Kluwer, Dordrecht
,
The Netherlands
.
You do not currently have access to this content.