The coupled extended Reynolds (which includes the effects of Navier-slip and flow rheology), elasticity deformation, and the load equilibrium (under a constant load condition) equations are solved simultaneously for the EHL problems. Results show that as the slip length increases or the flow index decreases, the film thickness decreases, the central pressure increases, the pressure spike decreases, the maximum pressure switches from the pressure spike to the central pressure, and the film shape and pressure profiles moves gradually toward the outlet. A proper combination of flow rheology and slip length could fulfill some preferred EHL conditions.

References

1.
Denn
,
M. M.
, 2001, “
Extrusion Instabilities and Wall Slip
,”
Annu. Rev. Fluid Mech.
,
33
, pp.
265
287
.
2.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Udagawa
,
H.
, 1999, “
Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellent Wall
,”
J. Fluid Mech.
,
381
, pp.
225
238
.
3.
Neto
,
C.
,
Evans
,
D.
,
Bonaccurso
,
E.
,
Butt
,
H.
, and
Craig
,
V. S. J.
, 2005, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
(
12
), pp.
2859
2897
.
4.
Fu
,
Z.
,
Guo
,
F.
, and
Wong
,
P. L.
, 2007, “
Non-Classical Elastohydrodynamic Lubricating Film Shape Under Large Slide-Roll Ratios
,”
Tribol. Lett.
,
27
, pp.
211
219
.
5.
Kaneta
,
M.
,
Nishikawa
,
H.
, and
Kameishi
,
K.
, 1990, “
Observation of Wall Slip in Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
, pp.
447
452
.
6.
Craig
,
V. S. J.
,
Neto
,
C.
, and
Williams
,
D. R. M.
, 2001, “
Shear-Dependent Boundary Slip in an Aqueous Newtonian Fluid
,”
Phys. Rev. Lett.
,
87
, p.
054504
.
7.
Zhu
,
Y.
, and
Granick
,
S.
, 2001, “
Rate-Dependent Slip of Newtonian Liquids at Smooth Surfaces
,”
Phys. Rev. Lett.
,
87
, p.
096105
.
8.
Zhang
,
Y. B.
, and
Wen
,
S.
, 2002, “
An Analysis of Elastohydrodynamic Lubrication With Limiting Shear Stress: Part I—Theory and Solutions
,”
STLE Tribol. Trans.
,
45
, pp.
135
144
.
9.
Stahl
,
J.
, and
Jacobson
,
B. O.
, 2003, “
A Lubricant Model Considering Wall-Slip in EHL Line Contacts
,”
ASME J. Tribol.
,
125
, pp.
523
532
.
10.
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
, 1998, “
On Lubricant Transport Conditions in Elastohydrodynamic Conjunctions
,”
Proc. R. Soc. London, Ser. A
,
454
, pp.
763
787
.
11.
Lee
,
R. T.
, and
Hamrock
,
B. J.
, 1990, “
A Circular Non-Newtonian Fluid Model: Part I–Used in Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
, pp.
486
496
.
12.
Vinogradova
,
O. I.
, 1999, “
Slippage of Water Over Hydrophobic Surfaces
,”
Int. J. Min. Process.
,
56
, pp.
31
60
.
13.
Granick
,
S.
,
Zhu
,
Y.
, and
Lee
,
H.
, 2003, “
Slippery Questions About Complex Fluids Flowing Past Solids
,”
Natural Materials
,
2
, pp.
221
227
.
14.
Cottin-Bizonne
,
C.
,
Jurine
,
S.
,
Baudry
,
J.
,
Crassous
,
J.
,
Restagno
,
F.
, and
Charlaix
,
E.
, 2002, “
Nanorheology: An Investigation of the Boundary Condition at Hydrophobic and Hydrophilic Interfaces
,”
Eur. Phys. J. E
,
9
, pp.
47
53
.
15.
Guo
,
F.
,
Li
,
X. M.
, and
Wong
,
P. L.
, 2011, “
A Novel Approach to Measure Slip-Length of Thin Lubricant Films Under High Pressures
,”
Tribol. Int.
,
46
(
1
), pp.
22
29
.
16.
Prakash
,
J.
, and
Sinha
,
P.
, 1975, “
Lubrication Theory for Micropolar Fluids and its Application to a Journal Bearing
,”
Int. J. Eng. Sci.
,
13
, pp.
217
232
.
17.
Stokes
,
V. K.
, 1966, “
Couple Stresses in Fluids
,”
Phys. Fluids
,
9
, pp.
1709
1715
.
18.
Chu
,
H. M.
,
Li
,
W. L.
,
Chang
,
Y. P.
, and
Huang
,
H. C.
, 2008, “
Effects of Couple Stress on Elastohydrodynamic Lubrication at Impact Loading
,”
ASME J. Tribol.
,
130
(
1
), p.
011010
.
19.
Bell
,
I. F.
, 1961, “
Elasto-Hydrodynamic Effects in Lubrication
,” M.Sc. thesis, University of Manchester, Manchester, UK.
20.
Tanner
,
R. I.
, 1965, “
Flow of Viscoelastic Non-Newonian Lubricants
,”
ASLE Trans.
,
8
, pp.
179
183
.
21.
Bair
,
S.
, and
Winer
,
W. O.
, 1979, “
A Rheological Model for Elastohydrodynamic Contacts Based in Primary Laboratory Data
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
258
265
.
22.
Yasuda
,
K.
,
Armstrong
,
R. C.
, and
Cohen
,
R. E.
, 1981, “
Shear Flow Properties of Concentrated Solutions of Linear and Star Branched Polystyrenes
,”
Rheol. Acta
,
20
, pp.
163
178
.
23.
Patir
,
N.
, and
Cheng
,
H. S.
, 1978, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
24.
Greenwood
,
J. A.
, and
Tripp
J.
H., 1970, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
25.
Li
,
W.-L.
,
Chu
,
H.-M.
, and
Chen
,
M.-D.
, 2006, “
The partially Wetted Bearing—Extended Reynolds Equation
,”
Tribol. Int.
,
39
, pp.
1428
1435
.
26.
Salant
,
R. F.
,
Yang
,
B.
, and
Thatte
,
A.
, 2010, “
Simulation of Hydraulic Seals
,”
J. Eng. Tribol.
,
224
(
9
), pp.
865
876
.
27.
Thatte
,
A.
, and
Salant
,
R. F.
, 2009, “
Elastohydrodynamic Analysis of an Elastomeric Hydraulic Rod Seal During Fully Transient Operation
,”
J. Tribol.
,
131
(
3
), p.
031501
.
28.
Thatte
,
A.
, and
Salant
,
R. F.
, 2010, “
Visco-Elastohydrodynamic Model of a Hydraulic Rod Seal During Transient Operation
,”
J. Tribol.
,
132
(
4
), p.
041501
.
29.
Dowson
,
D.
, and
Higginson
,
G. R.
, 1966,
Elastohydrodynamic Lubrication
,
Pergamon Press
,
Oxford, UK
, pp.
88
92
.
30.
Roelands
,
C. J. A.
, 1966, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,” Ph.D. thesis, Technische Hogeschool Delft, Delft, The Netherlands.
31.
Hsu
,
C. H.
, and
Lee
,
R. T.
, 1994, “
An Efficient Algorithm for Thermal Elastohydrodynamic Lubrication Under Rolling/Sliding Line Contacts
,”
ASME J. Tribol.
,
116
, pp.
762
769
.
32.
Chu
,
H.-M.
,
Li
,
W.-L.
, and
Chang
,
Y.-P.
, 2006, “
Thin Film Elastohydrodynamic Lubrication — A Power Law Fluid Model
,”
Tribol. Int.
,
39
, pp.
1474
1481
.
You do not currently have access to this content.