Based on the Greenwood and Williamson theory, an assumption about the contact-area size of asperities on rough surfaces is proposed under the premise that the height of these asperities on rough surfaces is a Gaussian distribution. A formula has been derived to measure the number of asperities on 2D surfaces. The contact stiffness on a unit length of a 1D outline and that on a unit area of 2D surfaces are presented based on a formula for determining the number of asperities. The relationship between macro parameters, such as contact stiffness and micro parameters on the joint surface, is established.

References

1.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. Lond. A.
,
243
, pp.
190
205
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. A.
,
295
, pp.
300
317
.
3.
Stanley
,
H. M.
, and
Kato
,
T.
, 1997, “
FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
,
119
(
3
), pp.
481
485
.
4.
McCool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.
5.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
, 1975, “
The Elastic Contact of Rough Surfaces
,”
Wear
,
35
, pp.
87
111
.
6.
Hyun
,
S.
,
Pel
,
L.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
, 2004, “
Finite-Element Analysis of Contact Between Elastic Self-Affine Surfaces
,”
Phys. Rev. E
,
70
(
22
), p.
026117
.
7.
Persson
,
B. N. J.
, 2001, “
Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
,
87
(
11
), pp.
116101
.
8.
Kogut
,
L.
, and
Jackson
,
R. L.
, 2005, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
ASME. J. Tribol.
,
128
(
1
), pp
213
217
.
9.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Higginson
,
J. G.
, 1985, “
The Contact of Elastic Regular Wavy Surfaces
,”
Int. J. Mech. Sci.
,
27
(
6
), pp.
383
396
.
10.
Polycarpou
,
A.
and
Etsion
,
I.
, 1999, “
Analytical Approximations in Modeling Contacting Rough Surfaces
,”
ASME. J. Tribol.
,
121
(
2
), pp.
234
239
.
11.
Onions
,
R. A.
, and
Archard
,
J. F.
, 1973, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D: Appl. Phys.
,
6
, pp.
289
304
.
12.
Greenwood
,
J. A.
, 2006, “
A Simplified Elliptical Model of Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
.
13.
Jackson
,
R. L.
, 2010, “
An Analytical Solution to an Archard-Type Fractal Rough Surface Contact Model
,”
Tribol. Trans.
,
53
(
4
), pp.
543
553
.
14.
Ciavarella
,
M. G.
,
Demelio
,
G.
,
Barbar
,
J. R.
, and
Jiang
,
Y. H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. Lond. A.
,
456
, pp.
387
405
.
15.
Nayak
,
P. R.
, 1973, “
Random Process Model of Rough Surfaces in Plastic Contact
,”
Wear
,
26
, pp.
305
333
.
16.
Ciavarella
,
M.
,
Delfine
,
V.
, and
Demelio
V.
, 2006, “
A New 2D Asperity Model With Interaction for Studying the Contact of Multiscale Rough Random Profiles
,”
Wear
,
261
, pp.
556
567
.
17.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME. J. Tribol.
,
112
(
2
), pp.
205
216
.
18.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME. J. Tribol.
,
113
(
1
), pp.
1
11
.
19.
Vallet
,
C.
,
Lasseux
,
D.
,
Zahouani
,
H.
, and
Sainsot
,
P.
, 2009, “
Sampling Effect on Contact and Transport Properties Between Fractal Surfaces
,”
Tribol. Int.
,
42
, pp.
1132
1145
.
20.
Chung
,
J. C.
, and
Lin
,
J. F.
, 2004, “
Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces
,”
ASME. J. Tribol.
,
126
(
4
), pp.
646
654
.
21.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2006, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
,
261
, pp.
1337
1347
.
22.
Rao
,
Z.
,
Xia
,
S.
, and
Wang
,
G.
, 1994, “
A Study of Contact Stiffness of Flat Rouge Surfaces
,”
J. Mech. Strength
,
16
(
2
), pp.
72
75
(in Chinese).
23.
Jiang
,
S.
,
Zheng
,
Y.
, and
Zhu
,
H.
, 2010, “
A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory
,”
ASME. J. Tribol.
,
132
, p.
011401
.
24.
Shi
,
X.
, and
Polycarpou
,
A. A.
, 2005, “
Measurement and Modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale
,”
ASME. J. Vibr. Acoust.
,
127
(
1
), pp.
52
60
.
25.
Wu
,
J. J.
, 2001, “
The Properties of Asperities of Real Surfaces
,”
ASME. J. Tribol.
,
123
(
4
), pp.
872
883
.
26.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.