Based on the Greenwood and Williamson theory, an assumption about the contact-area size of asperities on rough surfaces is proposed under the premise that the height of these asperities on rough surfaces is a Gaussian distribution. A formula has been derived to measure the number of asperities on 2D surfaces. The contact stiffness on a unit length of a 1D outline and that on a unit area of 2D surfaces are presented based on a formula for determining the number of asperities. The relationship between macro parameters, such as contact stiffness and micro parameters on the joint surface, is established.
Issue Section:
Contact Mechanics
References
1.
Archard
, J. F.
, 1957, “Elastic Deformation and the Laws of Friction
,” Proc. R. Soc. Lond. A.
, 243
, pp. 190
–205
.2.
Greenwood
, J. A.
, and Williamson
, J. B. P.
, 1966, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. Lond. A.
, 295
, pp. 300
–317
.3.
Stanley
, H. M.
, and Kato
, T.
, 1997, “FFT-Based Method for Rough Surface Contact
,” ASME J. Tribol.
, 119
(3
), pp. 481
–485
.4.
McCool
, J. I.
, 1986, “Comparison of Models for the Contact of Rough Surfaces
,” Wear
, 107
(1
), pp. 37
–60
.5.
Bush
, A. W.
, Gibson
, R. D.
, and Thomas
, T. R.
, 1975, “The Elastic Contact of Rough Surfaces
,” Wear
, 35
, pp. 87
–111
.6.
Hyun
, S.
, Pel
, L.
, Molinari
, J. F.
, and Robbins
, M. O.
, 2004, “Finite-Element Analysis of Contact Between Elastic Self-Affine Surfaces
,” Phys. Rev. E
, 70
(22
), p. 026117
.7.
Persson
, B. N. J.
, 2001, “Elastoplastic Contact Between Randomly Rough Surfaces
,” Phys. Rev. Lett.
, 87
(11
), pp. 116101
.8.
Kogut
, L.
, and Jackson
, R. L.
, 2005, “A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,” ASME. J. Tribol.
, 128
(1
), pp 213
–217
.9.
Johnson
, K. L.
, Greenwood
, J. A.
, and Higginson
, J. G.
, 1985, “The Contact of Elastic Regular Wavy Surfaces
,” Int. J. Mech. Sci.
, 27
(6
), pp. 383
–396
.10.
Polycarpou
, A.
and Etsion
, I.
, 1999, “Analytical Approximations in Modeling Contacting Rough Surfaces
,” ASME. J. Tribol.
, 121
(2
), pp. 234
–239
.11.
Onions
, R. A.
, and Archard
, J. F.
, 1973, “The Contact of Surfaces Having a Random Structure
,” J. Phys. D: Appl. Phys.
, 6
, pp. 289
–304
.12.
Greenwood
, J. A.
, 2006, “A Simplified Elliptical Model of Rough Surface Contact
,” Wear
, 261
(2
), pp. 191
–200
.13.
Jackson
, R. L.
, 2010, “An Analytical Solution to an Archard-Type Fractal Rough Surface Contact Model
,” Tribol. Trans.
, 53
(4
), pp. 543
–553
.14.
Ciavarella
, M. G.
, Demelio
, G.
, Barbar
, J. R.
, and Jiang
, Y. H.
, 2000, “Linear Elastic Contact of the Weierstrass Profile
,” Proc. R. Soc. Lond. A.
, 456
, pp. 387
–405
.15.
Nayak
, P. R.
, 1973, “Random Process Model of Rough Surfaces in Plastic Contact
,” Wear
, 26
, pp. 305
–333
.16.
Ciavarella
, M.
, Delfine
, V.
, and Demelio
V.
, 2006, “A New 2D Asperity Model With Interaction for Studying the Contact of Multiscale Rough Random Profiles
,” Wear
, 261
, pp. 556
–567
.17.
Majumdar
, A.
, and Bhushan
, B.
, 1990, “Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,” ASME. J. Tribol.
, 112
(2
), pp. 205
–216
.18.
Majumdar
, A.
, and Bhushan
, B.
, 1991, “Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,” ASME. J. Tribol.
, 113
(1
), pp. 1
–11
.19.
Vallet
, C.
, Lasseux
, D.
, Zahouani
, H.
, and Sainsot
, P.
, 2009, “Sampling Effect on Contact and Transport Properties Between Fractal Surfaces
,” Tribol. Int.
, 42
, pp. 1132
–1145
.20.
Chung
, J. C.
, and Lin
, J. F.
, 2004, “Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces
,” ASME. J. Tribol.
, 126
(4
), pp. 646
–654
.21.
Jackson
, R. L.
, and Streator
, J. L.
, 2006, “A Multi-Scale Model for Contact Between Rough Surfaces
,” Wear
, 261
, pp. 1337
–1347
.22.
Rao
, Z.
, Xia
, S.
, and Wang
, G.
, 1994, “A Study of Contact Stiffness of Flat Rouge Surfaces
,” J. Mech. Strength
, 16
(2
), pp. 72
–75
(in Chinese).23.
Jiang
, S.
, Zheng
, Y.
, and Zhu
, H.
, 2010, “A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory
,” ASME. J. Tribol.
, 132
, p. 011401
.24.
Shi
, X.
, and Polycarpou
, A. A.
, 2005, “Measurement and Modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale
,” ASME. J. Vibr. Acoust.
, 127
(1
), pp. 52
–60
.25.
Wu
, J. J.
, 2001, “The Properties of Asperities of Real Surfaces
,” ASME. J. Tribol.
, 123
(4
), pp. 872
–883
.26.
Johnson
, K. L.
, 1987, Contact Mechanics
, Cambridge University Press
, Cambridge
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.