Catcher bearings (CB) are an essential component for rotating machine with active magnetic bearings (AMBs) suspensions. The CB’s role is to protect the magnetic bearing and other close clearance component in the event of an AMB failure. The contact load, the Hertzian stress, and the sub/surface shear stress between rotor, races, and balls are calculated, using a nonlinear ball bearing model with thermal growth, during the rotor drop event. Fatigue life of the CB in terms of the number of drop occurrences prior to failure is calculated by applying the Rainflow Counting Algorithm to the sub/surface shear stress-time history. Numerical simulations including high fidelity bearing models and a Timoshenko beam finite element rotor model show that CB life is dramatically reduced when high-speed backward whirl occurs. The life of the CB is seen to be extended by reducing the CB clearances, by applying static side-loads to the rotor during the drop occurrence, by reducing the drop speed, by reducing the support stiffness and increasing the support damping and by reducing the rotor (journal)—bearing contact friction.

References

References
1.
Schweitzer
,
G.
,
Bleuler
,
H.
, and
Traxler
,
A.
,
Active Magnetic Bearings: Basics, Properties and Applications
(
vdf Hochschulverlag AG
,
Zurich
, 1994).
2.
Ishii
,
T.
, and
Kirk
,
R. G.
, 1996, “
Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop
,”
ASME J. Vibr. Acoust.
,
118
, pp.
154
163
.
3.
Orth
,
M.
,
Erb
,
R.
, and
Nordmann
,
R.
, 2000, “
Investigations of the Behavior of a Magnetically Suspended Rotor During Contact With Retainer Bearings
,”
Proceedings of the Seventh ISMB
,
Zurich, Switzerland
.
4.
Ishii
,
T.
, and
Kirk
,
R. G.
, 1991, “
Transient Response Technique Applied to Active Magnetic Bearing
,”
Journal of Rotating Machinery and Vehicle Dynamics
,
35
, pp.
191
199
.
5.
Fumagalli
,
M.
,
Varadi
,
P.
, and
Schweitzer
,
G.
, 1994, “
Impact Dynamics of High Speed Rotors in Retainer Bearings and Measurement Concepts
,”
Proc. Of the Fourth International Symposium on Magnetic Bearings
,
Zurich, Switzerland
, pp.
239
244
.
6.
Fumagalli
,
M. A.
, 1997, “
Modelling and Measurement Analysis of the Contact Interaction Between a High Speed Rotor and Its Stator
,” Ph.D. thesis, Swiss Institute of Technology, Switzerland.
7.
Cole
,
M. O. T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
, 2002, “
The Dynamic Behavior of a Rolling Element Auxiliary Bearing Following Rotor Impact
,”
ASME J. Tribol.
,
124
, pp.
406
413
.
8.
Sun
,
G.
, 2006, “
Rotor Drop and Following Thermal Growth Simulations Using Detailed Bearing and Damper Models
,”
J. Sound Vib.
,
289
, pp.
334
359
.
9.
Sun
,
G.
,
Palazzolo
,
A.
,
Provenza
,
A.
, and
Montague
,
G.
, 2004, “
Detailed Ball Bearing Model for Magnetic Suspension Auxiliary Service
,”
J. Sound Vib.
,
269
, pp.
933
963
.
10.
Taktak
,
S.
,
Ulker
,
S.
, and
Gunes
,
I.
, 2008, “
High Temperature Wear and Friction Properties of Duplex Surface Treated Bearing Steels
,”
Surf. Coat. Technol.
,
202
, pp.
3367
3377
.
11.
Böhmer
,
H.
,
Lösche
,
T.
,
Ebert
,
F.
, and
Streit
,
E.
, 1999, “
The Influence of Heat Generation in the Contact Zone on Bearing Fatigue Behavior
,”
ASME J. Tribol.
,
121
, pp.
462
467
.
12.
Caprio
,
M. T.
,
Murphy
,
B. T.
, and
Herbst
,
J. D.
, 2004, “
Spin Commissioning and Drop Tests of a 130kW-hr Composite Flywheel
,”
The Ninth International Symposium on Magnetic Bearing
,
KY.
13.
Ransom
,
D.
,
Masala
,
A.
,
Moore
,
J.
,
Vannini
,
G.
, and
Camatti
,
M.
, 2009, “
Numerical and Experimental Simulation of a Vertical High Speed Motorcompressor Rotor Drop onto Catcher Bearings
,”
J. Syst. Design Dyn.
,
3
, pp.
596
606
.
14.
Schmied
,
J.
, and
Pradetto
,
J.C.
, 1992, “
Behavior of a One Ton Rotor Being Dropped into Auxiliary Bearings
,”
Proceedings of Third International Symposium on Magnetic Bearings
,
VA.
15.
API Standard 617, 2002, “
Axial and Centrifugal Compressors and Expander Compressors for Petroleum
,” Chemical and Gas Industry Services,
7th ed.
,
American Petroleum Institute
, Washington D.C.
16.
Sun
,
G.
, 2006, “
Auxiliary Bearing Life Prediction Using Hertzian Contact Bearing Model
,”
J. Sound Vib.
,
128
, pp.
203
209
.
17.
Harris
,
T. A.
, 2001,
Rolling Bearing Analysis
, 4th ed.,
Wiley
,
New York
.
18.
Jorgensen
,
B. R.
, and
Shin
,
Y. C.
, 1997, “
Dynamics of Machine Tool Spindle/Bearing Systems Under Thermal Growth
,”
J. Tribol.
,
119
, pp.
875
882
.
19.
Stein
,
J. L.
, and
Tu
,
J. F.
, 1994, “
A State-space Model for Monitoring Thermally Induced Preload in Anti-friction Spindle Bearings of High Speed Machine Tools
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
372
386
.
20.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
, 1976, “
The Dynamics of Rotor Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
, pp.
593
600
.
21.
Palmgren
,
A.
, 1959,
Ball and Roller Bearing Engineering
, 3rd ed.,
SKF Industries
,
Philadelphia
.
22.
Lazovic
,
T.
,
Ristivojevic
,
M.
, and
Mitrovic
,
R.
, 2008, “
Mathematical Model of Load Distribution in Rolling Bearing
,”
FME Transactions
,
36
, pp.
189
196
.
23.
Wirsching
,
P. H.
,
Paez
,
T. L.
, and
Ortiz
,
K.
,
Random Vibrations:Theory and Practice
(
Dover
,
New York
, 2006).
24.
Raje
,
N.
, and
Sadeghi
,
F.
, 2009, “
Statistical Numerical Modeling of Sub-surface Initiated Spalling in the Bearing Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
223
, pp.
849
858
.
25.
Zwirlein
,
O.
, and
Schlicht
,
H.
, 1980, “
Werkstoffanstrengnug bei Walzbeanspruchung-Einfluss von Reibung und Eigenspannungen
,”
Z. Werkstofftech.
,
11
, pp.
1
14
.
26.
Kärkkäinen
,
A. Y. J.
,
Sopanen
,
J. T.
, and
Mikkola
A. N.
, 2006, “
Simulation of AMB Supported Rotor During Drop on Retainer Bearings
,” Research Report No. 63.
You do not currently have access to this content.