The effects of gas-rarefaction on dynamic characteristics of micro spiral-grooved-thrust-bearing are studied. The Reynolds equation is modified by the first order slip model, and the corresponding perturbation equations are then obtained on the basis of the linear small perturbation method. In the converted spiral-curve-coordinates system, the finite-volume-method (FVM) is employed to discrete the surface domain of micro bearing. The results show, compared with the continuum-flow model, that under the slip-flow regime, the decrease in the pressure and stiffness become obvious with the increasing of the compressibility number. Moreover, with the decrease of the relative gas-film-thickness, the deviations of dynamic coefficients between slip-flow-model and continuum-flow-model are increasing.

References

1.
Epstein
,
A. H.
, 2004, “
Millimeter Scale, Micro Electro Mechanical Systems Gas Turbine Engines
,”
J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.
2.
Gad-el-Hak
,
M.
, 1999, “
The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture
,”
ASME Trans. J. Fluids Eng.
,
121
(
1
), pp.
5
33
.
3.
Muijderman
,
E. A.
, 1966,
Spiral Groove Bearings
,
Springer-Verlag
,
New York
.
4.
Huang
,
J. B.
,
Tong
,
Q. Y.
, and
Mao
,
P. S.
, 1992, “
Gas-Lubricated Microbearings for Microactuators
,”
Sens. Actuators, A
,
35
(
1
), pp.
69
75
.
5.
Chee Wei
,
W.
,
Xin
,
Z.
,
Jacobson
,
S. A.
, and
Epstein
,
A. H.
, 2004, “
A Self-Acting Gas Thrust Bearing for High-Speed Microrotors
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
158
164
.
6.
Liu
,
R.
, and
Wang
,
X. L.
, 2010, “
The Numerical Predication of the Performance of Micro Gas Lubricated Spiral Groove Thrust Bearing
,”
Chin. J. Mech. Eng.
,
21
, pp.
113
117
.
7.
Burgdorger
,
A.
, 1959, “
The Influence of The Molecular Mean Free Path on The Performance of Hydrodynamic Gas Lubricated Bearing
,”
J. Basic Eng.
,
81
(
1
), pp.
94
100
.
8.
Miller
,
B. A.
, and
Green
,
I.
, 2001, “
Numerical Formulation for the Dynamic Analysis of Spiral-Grooved Gas Face Seals
,”
J. Tribol.
,
123
(
2
), pp.
395
403
.
9.
Miller
,
B. A.
, and
Green
,
I.
, 2002, “
Numerical Techniques for Computing Rotordynamic Properties of Mechanical Gas Face Seals
,”
J. Tribol.
,
124
(
4
), pp.
755
761
.
10.
Kogure
,
K.
,
Fukui
,
S.
,
Mitsuya
,
Y.
, and
Kaneko
,
R.
, 1983, “
Design of Negative Pressure Slider for Magnetic Recording Disks
,”
J. Lubr. Technol.
,
105
, pp.
496
502
.
11.
Lee
,
Y.-B.
,
Kwak
,
H.-D.
,
Kim
,
C.-H.
, and
Lee
,
N.-S.
, 2005, “
Numerical Prediction of Slip Flow Effect on Gas-Lubricated Journal Bearings for MEMS/MST-Based Micro-Rotating Machinery
,”
Tribol. Int.
,
38
(
2
), pp.
89
96
.
12.
James
,
D. D.
, and
Potter
,
A. F.
, 1967, “
Numerical Analysis of the Gas Lubricated Spiral Groove Thrust Bearing Compressor
,”
J. Lubr. Technol.
,
89
, pp.
439
444
.
13.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
, 1993, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
J. Tribol.
,
115
(
3
), pp.
348
354
.
14.
Zirkelback
,
N.
, and
Andres
,
L. S.
, 1999, “
Effect of Frequency Excitation on Force Coefficients of Spiral Groove Gas Seals
,”
J. Tribol.
,
121
(
4
), pp.
853
861
.
15.
Liu
,
Y.
,
Shen
,
X.
, and
Xu
,
W.
, 2002, “
Numerical Analysis of Dynamic Coefficients for Gas Film Face Seals
,”
J. Tribol.
,
124
(
4
), pp.
743
754
.
16.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
, 1965, “
The Static and Dynamic Characteristics of the Spiral Grooved Thrust Bearing
,”
J. Basic Eng.
,
87
, pp.
547
558
.
You do not currently have access to this content.