This work deals with the effect of surface roughness parameters on the frictional properties of nanowire-based lubrication systems (NBLS) across Cu surfaces with various topographies. The friction coefficient was discussed in the context of surface roughness parameters including the rms height, inter-island separation and a combined roughness parameter related to the pressure experienced by each nanowire. It was concluded that the rms height of asperity should not be lower than the radius of nanoparticles for effective lubrication. In addition, when the inter-island separation is an integer multiple of the nanowire length, nanowires perform as effective lubricants. Furthermore, the friction coefficient increased when the mean pressure experienced by the nanowires increased. The results obtained in this original study offer some interesting insights into the frictional properties of NBLS as a function of surface roughness parameters. This could lead to a great impact on the selection of nanoparticle-based lubricant aimed at reducing wear and energy losses for various applications.

References

1.
Kudo
,
H.
, 1965, “
A Note on the Role of Microscopically Trapped Lubricant at the Tool-Work Interface
,”
Int. J. Mech. Sci.
,
7
(
5
), pp.
383
388
.
2.
Persson
,
B. N. J.
, 2006, “
Contact Mechanics for Randomly Rough Surfaces
,”
Surf. Sci. Rep.
,
61
(
4
), pp.
201
227
.
3.
Komvopoulos
,
K.
, 1996, “
Surface Engineering and Microtribology for Microelectromechanical Systems
,”
Wear
,
200
(
1–2
), pp.
305
327
.
4.
Chang
,
W.-R.
, 2001, “
The Effect of Surface Roughness and Contaminant on the Dynamic Friction of Porcelain Tile
,”
App. Ergon.
,
32
(
2
), pp.
173
184
.
5.
Burton
,
Z.
, and
Bhushan
,
B.
, 2006, “
Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces
,”
Ultramicroscopy
,
106
(
8–9
), pp.
709
719
.
6.
Davis
,
R. H.
,
Zhao
,
Y.
,
Galvin
,
K. P.
, and
Wilson
,
H. J.
, 2003, “
Solid-Solid Contacts Due to Surface Roughness and Their Effects on Suspension Behaviour
,”
Philos. T. Roy. Soc. A
,
361
(1806), pp.
871
894
.
7.
Holmberg
,
K.
,
Ronkainen
,
H.
,
Laukkanen
,
A.
, and
Wallin
,
K.
, 2007, “
Friction and Wear of Coated Surfaces – Scales, Modelling and Simulation of Tribomechanisms
,”
Surf. Coat. Tech.
,
202
(
4–7
), pp.
1034
1049
.
8.
Carpick
,
R. W.
, and
Salmeron
,
M.
, 1997, “
Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy
,”
Chem. Rev.
,
97
(
4
), pp.
1163
1194
.
9.
Kusy
,
R. P.
, and
Whitley
,
J. Q.
, 1990, “
Effects of Surface Roughness on the Coefficients of Friction in Model Orthodontic Systems
,”
J. Biomech.
,
23
(
9
), pp.
913
925
.
10.
Zum Gahr
,
K. H.
,
Bundschuh
,
W.
, and
Zimmerlin
,
B.
, 1993, “
Effect of Grain Size on Friction and Sliding Wear of Oxide Ceramics
,”
Wear
,
162–164
(Part A), pp.
269
279
.
11.
Rasp
,
W.
, and
Wichern
,
C. M.
, 2002, “
Effects of Surface-Topography Directionality and Lubrication Condition on Frictional Behaviour During Plastic Deformation
,”
J. Mater. Process. Tech.
,
125–126
, pp.
379
386
.
12.
Sedlacek
,
M.
,
Podgornik
,
B.
, and
Vizintin
,
J.
, 2009, “
Influence of Surface Preparation on Roughness Parameters, Friction and Wear
,”
Wear
,
266
(
3–4
), pp.
482
487
.
13.
Bhuyan
,
S.
,
Holden
,
L. S.
,
Sundararajan
,
S.
,
Andjelkovic
,
D.
, and
Larock
,
R.
, 2007, “
Effect of Crosslinking on the Friction and Wear Behavior of Soybean Oil-Based Polymeric Materials
,”
Wear
,
263
(
7–12
), pp.
965
973
.
14.
Zum Gahr
,
K. H.
,
Wahl
,
R.
, and
Wauthier
,
K.
, 2009, “
Experimental Study of the Effect of Microtexturing on Oil Lubricated Ceramic/Steel Friction Pairs
,”
Wear
,
267
(
5–8
), pp.
1241
1251
.
15.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Fenske
,
G.
, and
Etsion
,
I.
, 2005, “
The Effect of Laser Surface Texturing on Transitions in Lubrication Regimes During Unidirectional Sliding Contact
,”
Tribol. Int.
,
38
(
3
), pp.
219
225
.
16.
Wakuda
,
M.
,
Yamauchi
,
Y.
,
Kanzaki
,
S.
, and
Yasuda
,
Y.
, 2003, “
Effect of Surface Texturing on Friction Reduction between Ceramic and Steel Materials under Lubricated Sliding Contact
,”
Wear
,
254
(
3–4
), pp.
356
363
.
17.
Zappone
,
B.
,
Rosenberg
,
K.
, and
Israelachvili
,
J.
, 2007, “
Role of Nanometer Roughness on the Adhesion and Friction of a Rough Polymer Surface and a Molecularly Smooth Mica Surface
,”
Tribol. Lett.
,
26
(
3
), pp.
191
201
.
18.
Banquy
,
X.
,
Zhu
,
X. X.
, and
Giasson
,
S.
, 2008, “
Mechanical and Frictional Properties of Nanoparticle Monolayers Grafted on Functionalized Mica Substrates
,”
J. Phys. Chem. B,
112
(
39
), pp.
12208
12216
.
19.
Patton
,
S. T.
,
Slocik
,
J. M.
,
Campbell
,
A.
,
Hu
,
J.
,
Naik
,
R. R.
, and
Voevodin
,
A. A.
, 2008, “
Bimetallic Nanoparticles for Surface Modification and Lubrication of MEMS Switch Contacts
,”
Nanotechnology
,
19
(
40
), pp.
405705
.
20.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
, 2007, “
Experimental Analysis of Tribological Properties of Lubricating Oils with Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.
21.
Gullac
,
B.
, and
Akalin
,
O.
, 2010, “
Frictional Characteristics of IF-WS2 Nanoparticles in Simulated Engine Conditions
,” Tribol. T.,
53
(6), pp. 939–947.
22.
Wornyoh
,
E. Y. A.
,
Jasti
,
V. K.
,
Higgs
,
C. F.
, III.
, 2007, “
A Review of Dry Particulate Lubrication: Powder and Granular Materials
,”
ASME J. Tribol.
,
129
(
2
), pp.
438
449
.
23.
Yu
,
L. G.
,
Yamaguchi
,
E. S.
,
Kasrai
,
M.
, and
Bancroft
,
G. M.
, 2011, “
Study of Silane-Based Antiwear Additives: Wear and Chemistry
,”
Tribol. Int.
,
44
(
6
), pp.
692
701
.
24.
Rapoport
,
L.
,
Fleischer
,
N.
, and
Tenne
,
R.
, 2005, “
Applications of WS2 (MoS2) Inorganic Nanotubes and Fullerene-Like Nanoparticles for Solid Lubrication and for Structural Nanocomposites
,”
J. Mater. Chem.
,
15
(
18
), pp.
1782
1788
.
25.
Lee
,
C.-G.
,
Hwang
,
Y.-J.
,
Choi
,
Y.-M.
,
Lee
,
J.-K.
,
C.
Choi
, and
Oh
,
J.-M.
, 2009, “
A Study on the Tribological Characteristics of Graphite Nano Lubricants
,”
Int. J. Precis. Eng. Man.
,
10
(
1
), pp.
85
90
.
26.
Narayanunni
,
V.
,
Kheireddin
,
B. A.
, and
Akbulut
,
M.
, 2011, “
Influence of Surface Topography on Frictional Properties of Cu Surfaces under Different Lubrication Conditions: Comparison of Dry, Base Oil, and ZnS Nanowire-Based Lubrication System
,”
Tribol. Int.
,
44
(
12
), pp.
1720
1725
.
27.
Chen
,
S.
, and
Liu
,
W.
, 2001, “
Characterization and Antiwear Ability of Non-Coated ZnS Nanoparticles and DDP-Coated ZnS Nanoparticles
,”
Mater. Res. Bull.
,
36
(
1–2
), pp.
137
143
.
28.
Liu
,
W.
, and
Chen
,
S.
, 2000, “
An Investigation of the Tribological Behaviour of Surface-Modified ZnS Nanoparticles in Liquid Paraffin
,”
Wear
,
238
(
2
), pp.
120
124
.
29.
Chen
,
S.
, and
Liu
,
W.
, 1999, “
Preparation and Characterization of Surface-Coated ZnS Nanoparticles
,”
Langmuir
,
15
(
23
), pp.
8100
8104
.
30.
Min
,
Y.
,
Akbulut
,
M.
,
Belman
,
N.
,
Golan
,
Y.
,
Zasadzinski
,
J.
, and
Israelachvili
,
J.
, 2007, “
Normal and Shear Forces Generated During the Ordering (Directed Assembly) of Confined Straight and Curved Nanowires
,”
Nano Lett.
,
8
(
1
), pp.
246
252
.
31.
Akbulut
,
M.
,
Belman
,
N.
,
Golan
,
Y.
, and
Israelachvili
,
J.
, 2006, “
Frictional Properties of Confined Nanorods
,”
Adv. Mater.
,
18
(
19
), pp.
2589
2592
.
32.
Min
,
Y.
,
Akbulut
,
M.
,
Prud’homme
,
R. K.
,
Golan
,
Y.
, and
Israelachvili
,
J.
, 2008, “
Frictional Properties of Surfactant-Coated Rod-Shaped Nanoparticles in Dry and Humid Dodecane
,”
J. Phys. Chem. B
,
112
(
46
), pp.
14395
14401
.
33.
Chen
,
Y. L.
,
Xu
,
Z.
, and
Israelachvili
,
J.
, 1992, “
Structure and Interactions of Surfactant-Covered Surfaces in Nonaqueous (Oil-Surfactant-Water) Media
,”
Langmuir
,
8
(
12
), pp.
2966
2975
.
34.
Kato
,
K.
, 2000, “
Wear in Relation to Friction – a Review
,”
Wear
,
241
(
2
), pp.
151
157
.
35.
Schey
,
J. A.
, and
Nautiyal
,
P. C.
, 1991, “
Effects of Surface Roughness on Friction and Metal Transfer in Lubricated Sliding of Aluminium Alloys against Steel Surfaces
,”
Wear
,
146
(
1
), pp.
37
51
.
36.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Tartaglino
,
U.
,
Volokitin
,
A. I.
, and
Tosatti
,
E.
, 2005, “
On the Nature of Surface Roughness with Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion
,”
J. Phys.-Condens. Mat.
,
17
(
1
), pp.
R1
R62
.
37.
Jeong
,
J.-H.
,
Bae
,
H.-T.
, and
Lim
,
D.-S.
, 2010, “
The Effect of Iron Catalysts on the Microstructure and Tribological Properties of Carbide-Derived Carbon
,”
Carbon
,
48
(
12
), pp.
3628
3634
.
38.
Berke
,
P.
,
El Houdaigui
,
F.
, and
Massart
,
T. J.
, 2010, “
Coupled Friction and Roughness Surface Effects in Shallow Spherical Nanoindentation
,”
Wear
,
268
(
1–2
), pp.
223
232
.
39.
Sahin
,
M.
, Ç
etinarslan
,
C. S.
, and
Akata
,
H. E.
, 2007, “
Effect of Surface Roughness on Friction Coefficients During Upsetting Processes for Different Materials
,”
Mater. Design
,
28
(
2
), pp.
633
640
.
40.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
, 2008, “
Effect of Surface Topography on Friction and Transfer Layer During Sliding
,”
Tribol. Online
,
3
(
1
), pp.
25
30
.
41.
Ajayi
,
O. O.
,
Erck
,
R. A.
,
Lorenzo-Martin
,
C.
, and
Fenske
,
G. R.
, 2009, “
Frictional Anisotropy under Boundary Lubrication: Effect of Surface Texture
,”
Wear
,
267
(
5–8
), pp.
1214
1219
.
42.
Keller
,
J.
,
Fridrici
,
V.
,
Kapsa
,
P.
, and
Huard
,
J. F.
, 2009, “
Surface Topography and Tribology of Cast Iron in Boundary Lubrication
,”
Tribol. Int.
,
42
(
6
), pp.
1011
1018
.
43.
Suh
,
N. P.
, 1973, “
The Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
.
44.
Sadykov
,
F. A.
,
Barykin
,
N. P.
, and
Aslanyan
,
I. R.
, 1999, “
Wear of Copper and Its Alloys with Submicrocrystalline Structure
,”
Wear
,
225-229
(Part 1), pp.
649
655
.
45.
Zhang
,
Y. S.
,
Han
,
Z.
,
Wang
,
K.
, and
Lu
,
K.
, 2006, “
Friction and Wear Behaviors of Nanocrystalline Surface Layer of Pure Copper
,”
Wear
,
260
(
9–10
), pp.
942
948
.
46.
Liang
,
H.
, and
Helen Xu
,
G.
, 2002, “
Lubricating Behavior in Chemical-Mechanical Polishing of Copper
,”
Scr. Mater.
,
46
(
5
), pp.
343
347
.
47.
Fang
,
T. H.
,
Li
,
W. L.
,
Tao
,
N. R.
, and
Lu
,
K.
, 2011, “
Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper
,”
Science
,
331
(
6024
), pp.
1587
1589
.
48.
Hu
,
C. K.
,
Luther
,
B.
,
Kaufman
,
F. B.
,
Hummel
,
J.
,
Uzoh
,
C.
, and
Pearson
,
D. J.
, 1995, “
Copper Interconnection Integration and Reliability
,”
Thin Solid Films
,
262
(
1–2
), pp.
84
92
.
49.
Lakshminarayanan
,
S.
,
Steigerwald
,
J.
,
Price
,
D. T.
,
Bourgeois
,
M.
,
Chow
,
T. P.
,
Gutmann
,
R. J.
, and
Murarka
,
S. P.
, 1994, “
Contact and Via Structures with Copper Interconnects Fabricated Using Dual Damascene Technology
,”
IEEE Electron Device Lett.
,
15
(
8
), pp.
307
309
.
50.
Liang
,
H.
,
Kaufman
,
F.
,
Sevilla
,
R.
, and
Anjur
,
S.
, 1997, “
Wear Phenomena in Chemical Mechanical Polishing
,”
Wear
,
211
(
2
), pp.
271
279
.
51.
Pradhan
,
N.
,
Katz
,
B.
, and
Efrima
,
S.
, 2003, “
Synthesis of High-Quality Metal Sulfide Nanoparticles from Alkyl Xanthate Single Precursors in Alkylamine Solvents
,”
J. Phys. Chem. B
,
107
(
50
), pp.
13843
13854
.
52.
Rapoport
,
L.
,
Fleischer
,
N.
, and
Tenne
,
R.
, 2003, “
Fullerene-Like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions
,”
Adv. Mater.
,
15
(7–8), pp.
651
655
.
53.
Savan
,
A.
,
Pflüger
,
E.
,
Voumard
,
P.
,
Schröer
,
A.
, and
Simmonds
,
M.
, 2000, “
Modern Solid Lubrication: Recent Developments and Applications of MoS2
,”
Lubr. Sci.
,
12
(
2
), pp.
185
203
.
54.
Hsu
,
S. M.
, 2004, “
Nano-Lubrication: Concept and Design
,”
Tribol. Int.
,
37
(
7
), pp.
537
545
.
55.
Gosvami
,
N. N.
,
Egberts
,
P.
, and
Bennewitz
,
R.
, 2011, “
Molecular Order and Disorder in the Frictional Response of Alkanethiol Self-Assembled Monolayers
,”
J. Phys. Chem. A
115
(
25
), pp.
6942
6947
.
56.
Jorge
,
G. A.
,
Bekeris
,
V.
,
Escobar
,
M. M.
,
Goyanes
,
S.
,
Zilli
,
D.
,
Cukierman
,
A. L.
, and
Candal
,
R. J.
, 2010, “
A Specific Heat Anomaly in Multiwall Carbon Nanotubes as a Possible Sign of Orientational Order-Disorder Transition
,”
Carbon
,
48
(
2
), pp.
525
530
.
57.
Chremos
,
A.
,
Margaritis
,
K.
, and
Panagiotopoulos
,
A. Z.
, 2010, “
Ultra Thin Films of Diblock Copolymers under Shear
,”
Soft Matter
,
6
(
15
), pp.
3588
3595
.
58.
Israelachvili
,
J.
,
Maeda
,
N.
,
Rosenberg
,
K. J.
, and
Akbulut
,
M.
, 2005, “
Effects of Sub-Angstrom (Pico-Scale) Structure of Surfaces on Adhesion, Friction, and Bulk Mechanical Properties
,”
J. Mater. Res.
,
20
(
8
), pp.
1952
1972
.
59.
Rudnick
,
L. R.
, 2009,
Lubricant Additives : Chemistry and Applications
,
CRC
,
London
.
60.
Akbulut
,
M.
,
Alig
,
A. R. G.
,
Min
,
Y.
,
Belman
,
N.
,
Reynolds
,
M.
,
Golan
,
Y.
, and
Israelachvili
,
J.
, 2007, “
Forces between Surfaces across Nanoparticle Solutions: Role of Size, Shape, and Concentration
,”
Langmuir
,
23
(
7
), pp.
3961
3969
.
61.
Yoshizawa
,
H.
,
You-Lung
,
C.
, and
Israelachvili
,
J.
, 1993, “
Recent Advances in Molecular Level Understanding of Adhesion, Friction and Lubrication
,”
Wear
,
168
(
1–2
), pp.
161
166
.
62.
Wijmans
,
C. M.
,
Zhulina
,
E. B.
, and
Fleer
,
G. J.
, 1994, “
Effect of Free Polymer on the Structure of a Polymer Brush and Interaction between Two Polymer Brushes
,”
Macromolecules
,
27
(
12
), pp.
3238
3248
.
63.
Harnau
,
L.
,
Penna
,
F.
, and
Dietrich
,
S.
, 2004, “
Colloidal Hard-Rod Fluids near Geometrically Structured Substrates
,”
Phys. Rev. E
,
70
(
2
),
021505
.
64.
Al-Bender
,
F.
, and
Swevers
,
J.
, 2008, “
Characterization of Friction Force Dynamics
,”
IEEE Control Syst.
,
28
(
6
), pp.
64
81
.
65.
Al-Bender
,
F.
,
Lampaert
,
V.
, and
Swevers
,
J.
, 2004, “
A Novel Generic Model at Asperity Level for Dry Friction Force Dynamics
,”
Tribol. Lett.
,
16
(
1
), pp.
81
93
.
66.
Muser
,
M. H.
,
Wenning
,
L.
, and
Robbins
,
M. O.
, 2001, “
Simple Microscopic Theory of Amontons’s Laws for Static Friction
,”
Phys. Rev. Lett.
,
86
(
7
), pp.
1295
1298
.
You do not currently have access to this content.