The cavitation bubble structures for the stationary specimen method were clarified for various distances, h, between the stationary specimen and the horn-tip surface. The generated cavitation bubbles constituted a huge number of tiny bubbles and bubble clusters of different sizes. The maximum cluster size was 1.4 mm. The observed cavitation patterns systematically changed during tests from the subcavitating state to the supercavitating state with respect to the separation distance, h. For h <4 mm, the bubbles have a definite trajectory, and the pressure patterns manifest a circular shape as a result of streaming induced by ultrasonic cavitation. The feature morphology of the eroded surfaces revealed that the predominant failure mode was fatigue. In the light of the material failure features and the cavitation patterns, it is also deduced that the important mechanism to transfer the cavitation energy to the solid is shock pressures accompanied by collapsing clusters.

References

References
1.
ASTM
, 2006,
“Standard Test Method for Cavitation Erosion Using Vibratory Apparatus,”
Annual Book of ASTM Standards
,
ASTM International
, pp.
98
112
.
2.
Li-xin
,
B.
,
Wei-lin
,
X.
,
Zhong
,
T.
, and
Nai-wen
,
L.
, 2008,
“A High-Speed Photographic Study of Ultrasonic Cavitation Near Rigid Boundary,”
J. Hydrodynam.
,
20
(
5
), pp.
637
644
.
3.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
, 1970,
Cavitation
,
McGraw-Hill
,
New York.
4.
Endo
,
K.
,
Okada
,
T.
, and
Najashima
,
M.
, 1967,
“A Study of Erosion Between Two Parallel Surfaces Oscillating at Close Proximity in Liquids,”
J. Lubr. Technol.
,
84
(
4
), pp.
229
236
.
5.
Brager
,
D.
,
Cheeswright
,
R.
,
Hammitt
,
F.
, and
Kemppainen
,
D. J.
, 1967,
“Cavitation Erosion of a Stationary Specimen in Close Proximity to an Oscillating Surface,”
Report No. 08153-4-T.
6.
Singer
,
B. C.
, and
Harvey
,
S. J.
, 1979,
“Gas Content and Temperature Effects in Vibratory Cavitation Tests,”
Wear
,
52
, pp.
147
160
.
7.
Kikuchi
,
K.
, and
Hammitt
,
F. G.
, 1985,
“Effect of Separation Distance on Cavitation Erosion of Vibratory and Stationary Specimen in a Vibratory Facility,”
Wear
,
102
, pp.
211
285
.
8.
Kikuchi
,
K.
,
Ahmed
,
S. M.
,
Hiraiwa
,
T.
,
Ito
,
Y.
, and
Oba
,
R.
, 1991,
“An Indirect Vibratory Method Capable of Simulating Several Cavitating States,”
JSME Int. J.
, Ser. II,
34
(
1
), pp.
1
8
.
9.
Rozenberg
,
L. D.
, 1971,
High Intensity Ultrasonic Fields
,
Plenum Press
,
New York.
10.
Vyas
,
B.
, and
Preece
,
C. M.
, 1976,
“Stress Produced in a Solid by Cavitation,”
J. Appl. Phys.
,
47
(
2
), pp.
5133
5138
.
11.
Dezhkunov
,
N. V.
,
Kuvshinov
,
G. I.
, and
Prokhorenko
,
P. P.
, 1983,
“Collapse of Cavitation Bubbles Between Two Walls in an Ultrasonic Field,”
Sov. Phys. Acoust.
,
29
(
6
), pp.
447
449
.
12.
Hansson
,
I.
, and
Morch
,
K. A.
, 1983,
“Guide Vanes in the Vibratory Cavitation System to Improve Cavitation Erosion Testing,”
Proceedings of the 6th International Conference on Erosion by Liquid and Solid Impact, Cambridge.
13.
Iwai
,
Y.
, and
Li
,
S.
, 2003,
“Cavitation Erosion in Waters Having Different Surface Tensions,”
Wear
,
254
(
1–2
), pp.
1
9
.
14.
Kuvshinov
,
G. I.
,
Prokhorenko
,
P. P.
,
Dezhkunov
,
N. V.
, and
Kuvshinov
,
V. I.
, 1982,
“Collapse of a Cavitation Bubble Between Two Solid Walls,”
Int. J. Heat Mass Transfer
,
25
(
3
), pp.
381
387
.
15.
Tsochatzidis
,
N. A.
,
Guiraud
,
P.
,
Wilhelm
,
A. M.
, and
Delmas
,
H.
, 2001,
“Determination of Velocity, Size and Concentration of Ultrasonic Cavitation Bubbles by the Phase-Doppler Technique,”
Chem. Eng. Sci.
,
56
, pp.
1831
1840
.
16.
Ahmed
,
S. M.
, 1998,
“Investigation of the Temperature Effects on Induced Impact Pressure and Cavitation Erosion,”
Wear
,
218
, pp.
119
127
.
17.
Ahmed
,
S. M.
,
Ito
,
Y.
,
Higuchi
,
J.
, and
Oba
,
R.
, 1990,
“A Peculiar Behavior of Cavitation-Nuclei Size Distributions in Sample Water Under Vibratory Erosion Tests,”
JSME Int. J.
, Ser. II,
33
(
4
), pp.
629
663
.
18.
Ahmed
,
S. M.
,
Hokkirigawa
,
K.
,
Ito
,
Y.
,
Oba
,
R.
, and
Matsudaira
,
Y.
, 1991,
“Scanning Electron Microscopy Observation on the Incubation Period of Vibratory Cavitation Erosion,”
Wear
,
142
, pp.
303
311
.
19.
Ahmed
,
S. M.
,
Hokkirigawa
,
K.
, and
Oba
,
R.
, 1994,
“Fatigue Failure of SUS 304 Caused by Vibratory Cavitation Erosion,”
Wear
,
177
, pp.
129
137
.
20.
Ahmed
,
S. M.
,
Hokkirigawa
,
K.
,
Oba
,
R.
, and
Kikuch
,
K.
, 1993,
“SEM Observation of Vibratory Cavitation Fracture-Mode During the Incubation Period and the Small Roughness Effect,”
Jpn. Soc. Mech. Eng. Int. J
, Ser. I,
34
(
3
), pp.
298
303
.
21.
Kuvshinov
,
G. I
, 1990,
“Reduction of Cavitation Action on a Surface Being Treated by Diminishing the Gap,”
J. Eng. Phys. Thermophys.
,
58
(
6
), pp.
986
990
.
22.
Holl
,
J. W.
, 1969,
“Limited Cavitation State of Knowledge,”
Proc. of the Symposium on Cavitation State of Knowledge, ASME, June
, pp.
26
63
.
23.
Jackson
,
F. J.
, 1960,
“Sonically Induced Microstreaming Near Plane Boundary II. Acoustic Streaming Field,”
J. Acoust. Soc. Am.
,
32
(
11
), pp.
1387
1395
.
24.
Panov
,
A. P.
, and
Semenova
,
N. G.
, 1987,
“Acoustic Streaming and Sound Absorption in a Cavitating Liquid,”
Sov. Phys. Acoust.
,
33
(
5
), pp.
556
557
.
25.
Mettin
,
R.
, 2005,
“Bubble Structure in Acoustic Cavitation,”
Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications
,
A.A.
Doinikov
, ed.,
Research Signpost
,
Kerala, India,
pp.
1
36
.
26.
Crespo
,
A.
,
Castro
,
F.
,
Manuel
,
F.
, and
Hernandez
,
J.
, 1990,
“Dynamics of an Elongated Bubble During Collapse,”
Trans. ASME, J. Fluid Eng.
,
112
, pp.
232
327
.
27.
Ellis
,
A. T.
, 1956,
“Production of Accelerated Cavitation Damage by an Acoustic Field in a Cylindrical Cavity,”
J. Acoust. Soc. Am.
,
27
(
5
), pp.
913
921
.
28.
Ahmed
,
S. A.
, 1991,
“Experimental Studies on the Mechanism of Vibratory Cavitation Erosion,”
Ph.D. thesis
,
Tohoku University
,
Sendai, Japan
.
29.
Sanada
,
N.
,
Ikeuchi
,
J.
,
Takayama
,
K.
, and
Onodera
,
O.
, 1983,
“Generation and Propagation of Cavitation Induced Shock Waves in Ultrasonic Vibratory Testing,”
Proceedings of the 14th International Symposium on Shock Tubes and Shock Waves
,
New South Webs University Press
,
Sydney
, pp.
405
412
.
30.
Morch
,
K. A.
, 1989,
“On Cavity Cluster Formation in Focused Acoustic Fields,”
J. Fluid Mech.
,
201
, pp.
57
76
.
31.
Pook
,
L. P.
, and
Smith
,
R. A.
, 1979,
“Theoretical Background to Elastic Fracture Mechanics, Current Status, Fracture Prospects,”
Proceedings of Conference on Fracture Mechanics
,
Smith, ed.
, Cambridge University.
32.
Kocanda
,
S.
, 1978,
Fatigue Failure of Metals,
Wydawnieta Naukowd-Technizsche, Warsaw
,
Poland.
33.
Abouel-Kasem
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
, 2009,
“Characterizing Cavitation Erosion Particle by Analysis of SEM Images,”
Tribol. Int.
,
42
, pp.
130
136
.
34.
Abouel-Kasem
,
A.
,
Saleh
,
B.
, and
Ahmed
,
S. M.
, 2008,
“Quantitative Analysis of Cavitation Erosion Particle Morphology in Dilute Emulsions,”
ASME J. Tribol.
,
130
, p.
041603
.
35.
Abouel-Kasem
,
A.
, and
Ahmed
,
S. M.
, 2008,
“Cavitation Erosion Mechanism Based on Analysis of Erosion Particles,”
ASME J. Tribol.
,
130
, p.
031601
.
36.
Abouel-Kasem
,
A.
,
Ezz-El-Deen
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
, 2010,
“Investigation Into Cavitation Erosion Pits,”
ASME J. Tribol.
,
131
, p.
031605
.
You do not currently have access to this content.