A single high-nitrogen face-centered-cubic (f.c.c.) phase (γN) layer formed on the plasma source nitrided AISI 316 austenitic stainless steel at a nitriding temperature of 450 °C for a nitriding time of 6 h. An approximately 17 μm-thick γN layer has a peak nitrogen concentration of about 20 at. %. Tribological properties of the γN phase layer on a ball-on-disk tribometer against an Si3N4 ceramic counterface under a normal load of 2 and 6 N with a sliding speed of 0.15 to 0.29 m/s were investigated by friction coefficient and specific wear rate measurement. Worn surface morphology and wear debris were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The microhardness of the γN phase layer on the nitrided stainless steel was measured as about 15.1 GPa. The change in the friction coefficient of the γN phase layer on the stainless steel was dependent on the applied normal load, which was associated with that in the specific wear rate. Under a lower normal load of 2 N, the lower specific wear rate of the γN phase layer with a sliding speed of 0.15 m/s was obtained as 2.8 × 10−6 mm3/N m with a friction coefficient of 0.60. Under a higher normal load of 6 N, the lower specific wear rate with a sliding speed of 0.29 m/s was 7.9 × 10−6 mm3/N m with a friction coefficient of 0.80. When the applied load increased from 2 to 6 N, a transition of the wear mechanisms from oxidative to abrasive wear was found, which was derived from the oxidation reaction and the h.c.p. martensite phase transformation of the γN phase during the wear tests, respectively.

References

References
1.
Zhang
,
Z. L.
and
Bell
,
T.
, 1985, “
Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel
,”
Surf. Eng.
,
1
, pp.
131
136
.
2.
Samandi
,
M.
,
Pauza
,
A.
,
Hatziandoniou
,
G.
,
Yasbandha
,
H.
,
Hutchings
,
R.
,
Collins
,
G. A.
, and
Tendys
,
J.
, 1992, “
Microstructure and Tribological Behavior of Plasma Immersion Ion Implanted Tool Steels
,”
Surf. Coat. Technol.
,
54/55
, pp.
447
452
.
3.
Williamson
,
D. L.
,
Ozturk
,
O.
,
Wei
,
R.
, and
Wilbur
,
P. J.
, 1994, “
Metastable Phase Formation and Enhanced Diffusion in F.C.C. Alloys Under High Dose, High Flux Nitrogen Implantation at High and Low Ion Energies
,”
Surf. Coat. Technol.
,
65
, pp.
15
23
.
4.
Rie
,
K. T.
and
Broszeit
,
E.
, 1995, “
Plasma Diffusion Treatment and Duplex Treatment - Recent Development and New Application
,”
Surf. Coat. Technol.
,
76/77
, pp.
425
436
.
5.
Bell
,
T.
, 2008, “
Current Status of Supersaturated Surface Engineered S-Phase Materials
,”
Key Eng. Mater.
,
373–374
, pp.
289
285
.
6.
Lei
,
M. K.
and
Zhang
,
Z. L.
, 1995, “
Plasma Source Ion Nitriding: A New Low-Temperature, Low-Pressure Nitriding Approach
,”
J. Vac. Sci. Technol.
,
A13
, pp.
2986
2990
.
7.
Lei
,
M. K.
and
Zhang
,
Z. L.
, 1997, “
Microstructure and Corrosion Resistance of Plasma Source Ion Nitrided Austenitic Stainless Steel
,”
J. Vac. Sci. Technol.
,
A15
, pp.
421
427
.
8.
Blawert
,
C.
,
Kalvelage
,
H.
,
Mordike
,
B. L.
,
Collins
,
G. A.
,
Short
,
K. T.
,
Jirásková
Y.
, and
Schneeweiss
,
O.
, 2001, “
Nitrogen and Carbon Expanded Austenite Produced by PI3
,”
Surf. Coat. Technol.
,
136
, pp.
181
187
.
9.
Lebrun
,
J. P.
,
Poirier
,
L.
,
Hertz
,
D.
, and
Lincot
,
C.
, 2002, “
Environmentally Friendly Low Temperature Plasma Processing of Stainless Steel Components for Nuclear Industry
,”
Surf. Eng.
,
18
, pp.
423
428
.
10.
Singh
,
V.
,
Marchev
,
K.
,
Cooper
,
C. V.
, and
Meletis
,
E. I.
, 2002, “
Intensified Plasma-Assisted Nitriding of AISI 316L Stainless Steel
,”
Surf. Coat. Technol.
,
160
, pp.
249
258
.
11.
Lei
,
M. K.
and
Zhu
,
X. M.
, 2005, “
Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel
,”
J. Electrochem. Soc.
,
152
, pp.
B291
B295
.
12.
Sun
,
Y.
and
Bell
,
T.
, 1998, “
Sliding Wear Characteristics of Low Temperature Plasma Nitrided 316 Austenitic Stainless Steel
,”
Wear
,
218
, pp.
34
42
.
13.
Blawert
,
C.
and
Mordike
,
B. L.
, 1999, “
Nitrogen Plasma Immersion Ion Implantation for Surface Treatment and Wear Protection of Austenitic Stainless Steel X6CrNiTi1810
,”
Surf. Coat. Technol.
,
116–119
, pp.
352
360
.
14.
Dahm
,
K. L.
and
Dearnley
,
P. A.
, 2001, “
On the Nature, Properties and Wear Response of S-Phase (Nitrogen-Alloyed Stainless Steel) Coatings on AISI 316L
,”
Proc. Inst. Mech. Eng. L
,
214
, pp.
181
198
.
15.
Manova
,
D.
,
Hirsch
,
D.
,
Richter
,
E.
,
Mändl
,
S.
,
Neumann
,
H.
, and
Rauschenbach
,
B.
, 2007, “
Microstructure of Nitrogen Implanted Stainless Steel After Wear Experiment
,”
Surf. Coat. Technol.
,
201
, pp.
8329
8333
.
16.
Georges
,
J.
and
Cleugh
,
D.
, 2001, “
Active Screen Plasma Nitriding
,”
Stainless Steel 2000: Thermochemical Surface Engineering of Stainless Steel
,
T.
Belland
K.
Akamatsu
, eds.,
Maney
,
London
, pp.
377
387
.
17.
Thaiwatthana
,
S.
,
Li
,
C. X.
,
Dong
,
H.
, and
Bell
,
T.
, 2002, “
Comparison Studies on Properties of Nitrogen and Carbon S-Phase on Low Temperature Plasma Alloyed AISI 316 Stainless Steel
,”
Surf. Eng.
,
18
, pp.
433
437
.
18.
Lei
,
M. K.
and
Liang
,
J.
, 2010, “
X-Ray Diffraction of High Nitrogen Face Centered Cubic Phase Formed on Nitrogen Modified Austenitic Stainless Steel
,”
Surf. Eng.
,
26
, pp.
305
311
. Available at: http://www.ingentaconnect.com/content/maney/se/2010/00000026/00000004/art00012
19.
Lei
,
M. K.
, 1999, “
Phase Transformations in Plasma Source Ion Nitrided Austenitic Stainless Steel at Low Temperature
,”
J. Mater. Sci.
,
34
, pp.
5975
5928
.
20.
Li
,
C. X.
,
Georges
,
J.
, and
Li
,
X. Y.
, 2002, “
Active Screen Plasma Nitriding of Austenitic Stainless Steel
,”
Surf. Eng.
,
18
, pp.
453
458
.
21.
Foerster
,
C. E.
,
Serbera
,
F. C.
,
da Silva
,
S. L. R.
,
Lepienski
,
C. M.
,
de Siqueira
,
C. J.
, and
Ueda
,
M.
, 2007, “
Mechanical and Tribological Properties of AISI 304 Stainless Steel Nitrided by Glow Discharge Compared to Ion Implantation and Plasma Immersion Ion Implantation
,”
Nucl. Instrum. Methods Phys. Res. B
,
257
, pp.
732
736
.
22.
Saklakoglu
,
N.
,
Saklakoglu
,
I. E.
,
Ceyhun
,
V.
,
Agachan
,
N.
,
Short
,
K. T.
, and
Collins
,
G. A.
, 2007, “
Tribological Behaviour of Plasma Immersion Ion Implanted AISI 304 Stainless Steel Against Polymer and Ceramic Counterfaces
,”
Surf. Eng.
,
23
, pp.
257
260
.
23.
Baranowska
,
J.
and
Franklin
,
S. E.
, 2008, “
Characterization of Gas-Nitrided Austenitic Steel With an Amorphous/Nanocrystalline Top Layer
,”
Wear
,
264
, pp.
899
903
.
24.
Brin
,
C.
,
Riviere
,
J. P.
,
Eymery
,
J. P.
, and
Villain
,
J. P.
, 2001, “
Structural Characterization of Wear Debris Produced During Friction Between Two Austenitic Stainless Steel Antagonists
,”
Tribol. Lett.
,
11
, pp.
127
132
.
25.
Hubner
,
W.
, 2001, “
Phase Transformations in Austenitic Stainless Steels During Low Temperature Tribological Stressing
,”
Tribol. Int.
,
34
, pp.
231
236
.
26.
Hua
,
M.
,
Wei
,
X.
, and
Li
,
J.
, 2008, “
Friction and Wear Behavior of SUS 304 Austenitic Stainless Steel Against Al2O3 Ceramic Ball Under Relative High Load
,”
Wear
,
265
, pp.
799
810
.
27.
Waterhouse
,
R. B.
, 1986, “
The Fretting Wear of Nitrogen-Bearing Austenitic Stainless Steel at Temperatures to 600 °C
,”
ASME J. Tribol.
,
108
, pp.
359
362
.
28.
Lei
,
M. K.
and
Zhang
,
Z. L.
, 1997, “
Nitrogen-Induced H.C.P. Martensite Formation in Plasma Source Ion Nitrided Austenitic Stainless Steel
,”
J. Mater. Sci. Lett.
,
16
, pp.
1167
1169
.
29.
Dash
,
J.
and
Otte
,
H. M.
, 1963, “
The Martensite Transformation in Stainless Steel
,”
Acta Metall.
,
11
, pp.
1169
1178
.
30.
Lei
,
M. K.
and
Zhu
,
X. M.
, 2004, “
Chemical State of Nitrogen in a High Nitrogen Faced-Centered-Cubic Phase Formed on Plasma Source Ion Nitrided Austenitic Stainless Steel
,”
J. Vac. Sci. Technol.
,
A22
, pp.
2067
2070
.
31.
Hoar
,
T. P.
and
Price
,
L. E.
, 1938, “
The Electrochemical Interpretation of Wagner’s Theory of Tarnishing Reactions
,”
Trans. Faraday Soc.
,
34
, pp.
867
872
.
32.
Olson
,
G. B.
and
Cohen
,
M.
, 1976, “
A General Mechanism of Martensite Nucleation: Part I. General Concepts and the FCC→HCP Transformation
,”
Metall. Trans.
,
7A
, pp.
1897
1904
.
33.
Campillo Illanes
,
B. F.
and
Sarkar
,
A. D.
, 1986, “
Wear of Thermochemically Produced Nitrogen Stainless Steel
,”
ASME J. Tribol.
,
108
, pp.
334
339
.
34.
Farias
,
M. C. M.
,
Souza
,
R. M.
,
Sinatora
,
A.
, and
Tanaka
,
D. K.
, 2007, “
The Influence of Applied Load, Sliding Velocity and Martensitic Transformation on the Unlubricated Sliding Wear of Austenitic Stainless Steel
,”
Wear
,
263
, pp.
773
781
.
35.
Li
,
C. X.
and
Bell
,
T.
, 2004, “
Sliding Wear Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel
,”
Wear
,
256
, pp.
1144
1152
.
You do not currently have access to this content.