Frictional contacts of thermoviscoelastic bodies are complicated nonlinear temperature- and time-dependent problems. The introduction of friction with its irreversible character makes the problem more difficult. Additionally, the consideration of temperature, as an independent variable, destroys the convolution integral form of the viscoelasticity constitutive relations. This paper presents a computational model capable of predicting the nonlinear quasistatic response of uncoupled thermoviscoelastic frictional contact problems. The contact problem, as a variational inequality constrained model, is handled by using the Lagrange multiplier method to incorporate the inequality contact constraints. A local nonlinear friction law is adapted to model friction at the contact interface. This, in turn, eliminates difficulties that arise with the application of the classical friction laws. The temperature-dependency of viscoelasticity is modeled by applying the time-temperature superposition principle. The constitutive equations are transformed to be a function of the reduced time as the only independent variable, maintaining the convolution integral form. Two different illustrative examples are presented to demonstrate the applicability of the proposed model to analyze both nonconformal and conformal thermoviscoelastic frictional contact problems.

References

References
1.
Leaderman
,
H.
, 1943,
Elastic and Creep Properties of Filamentous Materials and Other Polymers
,
Textile Foundation
,
Washington, D.C.
, pp.
175
185
.
2.
Tobolsky
,
A. V.
, 1956, “
Stress Relaxation Studies of the Viscoelastic Properties of Polymers
,”
J. Appl. Phys.
,
27
(
7
), pp.
673
685
.
3.
Schwarzl
,
F.
,
and
Staverman
,
A. J.
, 1952, “
Time-Temperature Dependence of Linear Viscoelastic Behavior
,”
J. Appl Phys.
,
23
(
8
), pp.
838
843
.
4.
Chazal
,
C.
, and
Arfaoui
,
M.
, 2001, “
Further Development in Thermodynamics Approach for Thermoviscoelastic Materials
,”
Mech. time-Dependent Mater.
,
5
, pp.
177
198
.
5.
Taylor
,
R. L.
, and
Chang
,
T. Y.
, 1966, “
An Approximate Method for Thermoviscoelastic Stress Analysis
,”
Nucl. Eng.
,
4
(
1
), pp.
21
28
.
6.
Taylor
,
R. L.
Pister
,
K. S.
, and
Goudreau
,
G. L.
, 1970, “
Thermomechanical Analysis of Viscoelastic Solids
,”
Int. J. Numer. Methods. Eng.
,
2
(
1
), pp.
45
59
.
7.
Hilton
,
H. H.
, and
Yi
,
S.
, 1990, “
Anisotropic Viscoelastic Finite Element Analysis of Mechanically and Hygrothermally Loaded Composites
,” University of Illinois, U-C, Technical Report, AAE 90-8, UILU ENG 90-0508.
8.
Yi
,
S.
,
Ahmed
,
M. F.
, and
Ramesh
,
A.
, 1996, “
Data Parallel Computation for Thermo-Viscoelastic Analysis of Composite Structures
,”
Adv. Eng. Software
,
27
, pp.
97
102
.
9.
Zocher
,
M. A.
, 1995, “
A Thermoviscoelastic Finite Element Formulation for the Analysis of Composites
,” Ph.D. dissertation, Texas A & M University, College Station, TX.
10.
Zocher
,
M. A.
,
Groves
,
S. E.
, and
Allen
,
D. H.
, 1997, “
A Three-Dimensional Finite Element Formulation for Thermoviscoelastic Orthotropic Media
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
2267
2288
.
11.
Poon
,
H.
, and
Ahmed
,
H. A.
, 1998, “
A Material Point Time Integration Procedure for Anisotropic Thermorheologically Simple Viscoelastic Solids
,”
Comput. Mech.
,
21
, pp.
236
242
.
12.
Park
,
S. W.
, and
Kim
,
Y. R.
, 1998, “
Analysis of Layered Viscoelastic System With Transient Temperatures
,”
J. Eng. Mech.
,
124
(
2
), pp.
223
231
.
13.
Bonetti
,
E.
, and
Bonfanti
,
G.
, 2003, “
Existence and Uniqueness of the Solution to a 3D Thermoviscoelastic System
,”
Electron. J. Differ. Equations
,
50
, pp.
1
15
. Available at http://ejde.math.txstate.edu/Volumes/2003/50/bonetti.pdf
14.
Chen
,
W. H.
,
Chang
,
C. M.
, and
Yeh
,
J. T.
, 1991, “
Finite Element Analysis of Viscoelastic Contact Problems with Friction
,” The Fifteenth National Conference on Theoretical and Applied Mechanics, Tainan, Taiwan, R. O. C., pp.
713
720
.
15.
Chang
,
C. M.
, and
Chen
,
W. H.
, 1996, “
Thermoviscoelastic Contact Analysis With Friction by an Incremental Thermal Relaxation Procedure
,”
Comput. Methods Appl. Mech. Eng.
,
130
, pp.
151
162
.
16.
Shillor
,
M.
, and
Sofonea
,
M.
, 2000, “
A Quasistatic Viscoelastic Contact Problem With Friction
,”
Int. J. Eng. Sci.
,
38
, pp.
1517
1533
.
17.
Awbi
,
B.
,
Rochdi
,
M.
, and
Sofonea
,
M.
, 2000, “
Abstract Evolution Equations for Viscoelastic Frictional Contact Problems
,”
J. Appl. Math. Phys.
,
51
, pp.
218
235
.
18.
Han
,
W.
, and
Sofonea
,
M.
, 2000, “
Evolutionary Variational Inequalities Arising in Frictional Contact Problems
,”
SIAM J. Numer. Anal.
,
38
, pp.
556
579
.
19.
Awbi
,
B.
,
Chau
,
O.
, and
Sofonea
,
M.
, 2002, “
Variational Analysis of a Frictional Contact Problem for Viscoelastic Bodies
,”
Int. Math. J.
,
1
, pp.
333
348
.
20.
Campo
,
M.
,
Fernandez
,
J. R.
, and
Viano
,
J. M.
, 2006, “
Numerical Analysis and Simulation of a Quasistatic Frictional Contact Problem With Damage in Viscoelasticity
,”
J. Comput. Appl. Math.
,
192
(
1
), pp.
30
39
.
21.
Han
,
W.
, and
Sofonea
,
M.
, 2002, “
Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity
,”
Studies in Advanced Mathematics
,
AMS-IP, American Mathematical Society, International Press
,
Somerville, MA
, Vol.
30
.
22.
Batra
,
R. C.
,
Levinson
,
M.
, and
Betz
,
E.
, 1976, “
Rubber Covered Rolls—The Thermoviscoelastic Problem, A Finite Element Solution
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
767
785
.
23.
Batra
,
R. C.
, 1977, “
Cold Sheet Rolling—The Thermoviscoelastic Problem—A Numerical Solution
,”
Inter. J. Numer. Methods Eng.
,
11
, pp.
671
682
.
24.
Copetti
,
M. I. M.
, and
French
,
D. A.
, 2003, “
Numerical Solution of a Thermoviscoelastic Contact Problem by a Penalty Method
,”
SIAM J. Numer. Anal.
,
41
(
4
), pp.
1487
1504
.
25.
Copetti
,
M. I. M.
, 2004, “
Numerical Approximation of a Thermoviscoelastic Problem to the Contact of Two Rods by a Penalty Method
,”
Numer.Methods Partial Differ. Equ.
,
20
, pp.
481
493
.
26.
Copetti
,
M. I. M.
, 2005, “
Error Analysis for a Finite Element Approximation of a Thermoviscoelastic Contact Problem
,”
J. Comput. Appl. Math.
,
180
, pp.
181
190
.
27.
Andrews
,
K. T.
,
Shillor
,
M.
,
Wright
,
S.
, and
Klarbring
,
A.
, 2002, “
One-Dimensional Dynamic Thermoviscoelastic Contact With Damage
,”
J Math. Anal. Appl.
,
272
, pp.
249
275
.
28.
Chau
,
O.
, and
Awbi
,
B.
, 2004, “
Quasistatic Thermoviscoelastic Frictional Contact Problem With Damped Response
,”
Appl Anal.
,
83
, pp.
635
648
.
29.
Mahmoud
,
F. F.
,
El-Shafei
,
A. G.
, and
Attia
,
M. A.
, 2007, “
An Incremental Adaptive Procedure for Viscoelastic Contact Problems
,”
ASME J. Tribol.
,
129
, pp.
305
313
.
30.
Mahmoud
,
F. F
.,
El-Shafei
,
A. G.
,
Al-Shourbagy
,
A. E.
, and
Abel-Rahman
A. A.
, 2008, “
A Numerical Solution for Quasistatic Viscoelastic Frictional Contact Problems
,”
ASME J. Tribol.
,
130
, pp.
1
13
.
31.
Mahmoud
,
F. F.
,
El-Shafei
,
A. G.
, and
Attia
,
M. A.
, 2008, “
A Quasistatic Analysis for Thermoviscoelastic Contact Problems
,”
J. Strain Anal. Eng.
,
43
, pp.
655
672
.
32.
Mahmoud
,
F. F.
,
El-Shafei
,
A. G.
, and
Attia
,
M. A.
, 2011, “
Analysis of Thermoviscoelastic Contact of Layered Bodies
,”
Finite Elem. Anal. Des.
,
47
, pp.
307
318
.
33.
Williams
,
M. L.
, 1964, “
Structural Analysis of Viscoelastic Materials
,”
AIAA J.
,
2
(
5
), pp.
785
808
.
34.
William
,
M.
,
Landel
,
R.
, and
Ferry
,
J.
, 1955, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
(
14
), pp.
3701
3707
.
35.
Rabinowicz
,
E.
, 1995,
Friction and Wear of Materials
,
2nd ed.
,
John Wiley & Sons
,
New York.
36.
Oden
,
J. T.
, and
Pires
,
E. B.
, 1983, “
Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity
,”
J. Appl. Mech.
,
50
, pp.
67
76
.
37.
Oden
,
J. T.
, and
Pires
,
E. B.
, 1984, “
Algorithms and Numerical Results for Finite Element Approximations of Contact Problems With Non-Classical Friction Laws
,”
Comput. Struct.
,
19
(
1–2
), pp.
137
147
.
38.
Schapery
,
R. A.
, 1974, “
Viscoelastic Behavior and Analysis of Composite Materials
,”
Mechanics of Composite Materials
,
G. P.
Sendeckyj
, ed.,
Academic
,
New York
, Vol.
2
, pp.
85
168
.
39.
Kikuchi
,
N.
, and
Oden
,
J. T.
, 1988, “
Contact Problems in Elasticity – A Study of Variational Inequalities and Finite Element Methods
,”
Applied Mechanics and Numerical Mathematics
,
SIAM Society for Industrial and Applied Mathematics
,
Philadelphia
, Vol.
6
.
40.
Wriggers
,
P.
, 2006,
Computational Contact Mechanics
,
2nd ed.
,
Springer-Verlag
,
Berlin, Heidelberg.
41.
Mohamed
,
S. A.
,
Helal
,
M. M.
, and
Mahmoud
,
F. F.
, 2006, “
An Incremental Convex Programming Model of the Elastic Frictional Contact Problems
,”
Struct. Eng. Mech.
,
23
(
4
), pp.
431
447
.
42.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, New Jersey
.
43.
Ting
,
T. C. T.
, 1968, “
Contact Problems in the Linear Theory of Viscoelasticity
,”
J. Appl. Mech.
,
35
(
4
), pp.
248
254
.
44.
Naghieh
,
G. R.
,
Jin
,
Z. M.
, and
Rahnejat
,
H.
, 1999, “
Characteristics of Frictionless Contact of Bonded Elastic and Viscoelastic Layered Solids
,”
Wear
,
232
, pp.
243
249
.
45.
Sokolinkoff
,
I. S.
, 1956,
Mathematical Theory of Elasticity
,
2nd ed.
,
McGraw-Hill
,
New York.
You do not currently have access to this content.