The influence of non-Gaussian surface roughness on elastic contacts loaded in both normal and tangential directions has been investigated. A numerical solution method based on the multilevel scheme and incorporating the theorem of Ciavarella/Jaeger has been implemented, which allows fast calculation of partial slip loading conditions, including the energy dissipation for a fully reversed tangential loading cycle. The effect of varying roughness rms, skewness, kurtosis, and correlation lengths on contact areas, stiffness values, and energy dissipation is presented, and the significance of these parameters and of the loading method are discussed. It was found that the energy dissipation can be greatly increased by greater surface roughness. Maps showing how the energy dissipation is distributed within the contact are presented, which provide some explanation for this observation and the scatter that may occur for surfaces of nominally similar roughness. The suitability of these parameters for predicting the contact behavior of rough surfaces is also considered.

References

References
1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
2.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
, 1975, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
(
1
), pp.
87
111
.
3.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
4.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
,
456
(
1994
), pp.
387
405
.
5.
Persson
,
B. N. J.
, 2001, “
Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
,
87
(
11
), p.
116101
.
6.
Persson
,
B. N. J.
, 2001, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
,
115
(
8
), pp.
3840
3861
.
7.
Ciavarella
,
M.
,
Murolo
,
G.
,
Demelio
,
G.
, and
Barber
,
J. R.
, 2004, “
Elastic Contact Stiffness and Contact Resistance for the Weierstrass Profile
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1247
1265
.
8.
Jackson
,
R. L.
, and
Green
,
I.
, 2011, “
On the Modeling of Elastic Contact Between Rough Surfaces
,”
Tribol. Trans.
,
54
(
2
), pp.
300
314
.
9.
Björklund
,
S.
, 1997, “
A Random Model for Micro-Slip Between Nominally Flat Surfaces
,”
ASME J. Tribol.
,
119
(
4
), pp.
726
732
.
10.
Hagman
,
L. A.
, and
Olofsson
,
U.
, 1998, “
A Model for Micro-Slip Between Flat Surfaces Based on Deformation of Ellipsoidal Elastic Asperities – Parametric Study and Experimental Investigation
,”
Tribol. Int.
,
31
(
4
), pp.
209
217
.
11.
Kasarekar
,
A. T.
,
Bolander
,
N. W.
,
Sadeghi
,
F.
, and
Tseregounis
,
S.
, 2007, “
Modeling of Fretting Wear Evolution in Rough Circular Contacts in Partial Slip
,”
Int. J. Mech. Sci.
,
49
(
6
), pp.
690
703
.
12.
Dini
,
D.
, and
Hills
,
D. A.
, 2009, “
Frictional Energy Dissipation in a Rough Hertzian Contact
,”
ASME J. Tribol.
,
131
(
2
), p.
021401
.
13.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
, 2010, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2554
2567
.
14.
Filippi
,
S.
,
Akay
,
A.
, and
Gola
,
M. M.
, 2004, “
Measurement of Tangential Contact Hysteresis During Microslip
,”
ASME J. Tribol.
,
126
(
3
), pp.
482
489
.
15.
Kartal
,
M. E.
,
Mulvihill
,
D. M.
,
Nowell
,
D.
, and
Hills
,
D. A.
, 2010, “
Determination of the Frictional Properties of Titanium and Nickel Alloys Using the Digital Image Correlation Method
,”
Exp. Mech.
,
51
(
3
), pp.
359
371
.
16.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
, 2011, “
Development of a Lap Joint Fretting Apparatus
,”
Exp. Mech.
,
51
(
8
), pp.
1405
1419
.
17.
Jang
,
J. H.
, and
Barber
,
J. R.
, 2011, “
Effect of Phase on the Frictional Dissipation in Systems Subjected to Harmonically Varying Loads
,”
Eur. J. Mech. A/Solid
,
30
(
3
), pp.
269
274
.
18.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
, 2011, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
.
19.
Sanliturk
,
K. Y.
,
Ewins
,
D. J.
, and
Stanbridge
,
A. B.
, 2001, “
Underplatform Dampers for Turbine Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data
,”
ASME J. Eng. Gas Turb. Power
,
123
(
4
), pp.
919
929
.
20.
Petrov
,
E. P.
, and
Ewins
,
D. J.
, 2004, “
State-of-the-Art Dynamic Analysis for Non-Linear Gas Turbine Structures
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
218
(
3
), pp.
199
211
.
21.
Ciavarella
,
M.
,
Greenwood
,
J. A.
, and
Paggi
,
M.
, 2008, “
Inclusion of ‘Interaction’ in the Greenwood and Williamson Contact Theory
,”
Wear
,
265
(
5–6
), pp.
729
734
.
22.
Webster
,
M. N.
, and
Sayles
,
R. S.
, 1986, “
A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces
,”
ASME J. Tribol.
,
108
(
3
), pp.
314
20
.
23.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
16
.
24.
Chen
,
W. W.
, and
Wang
,
Q. J.
, 2009, “
A Numerical Static Friction Model for Spherical Contacts of Rough Surfaces, Influence of Load, Material, and Roughness
,”
ASME J. Tribol.
,
131
(
2
), p.
021402
.
25.
Popescu
,
G.
,
Morales-Espejel
,
G. E.
,
Wemekamp
,
B.
, and
Gabelli
,
A.
, 2006, “
An Engineering Model for Three-Dimensional Elastic-Plastic Rolling Contact Analyses
,”
Tribol. Trans.
,
49
(
3
), pp.
387
399
.
26.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
27.
Ogilvy
,
J. A.
, 1992, “
Numerical Simulation of Elastic-Plastic Contact Between Anisotropic Rough Surfaces
,”
J. Phys. D: Appl. Phys.
,
25
(
12
), pp.
1798
1809
.
28.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
G.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.
29.
Cohen
,
D.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2008, “
A Model for Contact and Static Friction of Nominally Flat Rough Surfaces Under Full Stick Contact Condition
,”
ASME J. Tribol.
,
130
(
3
), p.
031401
.
30.
Cohen
,
D.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2009, “
The Effect of Surface Roughness on Static Friction and Junction Growth of an Elastic-Plastic Spherical Contact
,”
ASME J. Tribol.
,
131
(
2
), p.
021404
.
31.
Li
,
L.
,
Etsion
,
I.
, and
Talke
,
F. E.
, 2010, “
Contact Area and Static Friction of Rough Surfaces With High Plasticity Index
,”
ASME J. Tribol.
,
132
(
3
), p.
031401
.
32.
Lee
,
C.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
, 2010, “
Application of Elastic–Plastic Static Friction Models to Rough Surfaces With Asymmetric Asperity Distribution
,”
ASME J. Tribol.
,
132
(
2
), p.
031602
.
33.
Chen
,
W. W.
,
Liu
,
S.
, and
Wang
,
Q. J.
, 2008, “
Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011022
.
34.
Fulleringer
,
B.
, and
Nelias
,
D.
, 2010, “
On the Tangential Displacement of a Surface Point Due to a Cuboid of Uniform Plastic Strain in a Half-Space
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021014
.
35.
Tabor
,
D.
, 1959, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. London, Ser. A
,
251
(
1266
), pp.
378
393
.
36.
Etsion
,
I.
, 2010, “
Revisiting the Cattaneo-Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies
,”
ASME J. Tribol.
,
132
(
2
), p.
020801
.
37.
Chilamakuri
,
S.
, and
Bhushan
,
B.
, 1998, “
Contact Analysis of Non-Gaussian Random Surfaces
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
212
(
1
), pp.
19
32
.
38.
Kim
,
T. W.
,
Bhushan
,
B.
, and
Cho
,
Y. J.
, 2006, “
The Contact Behavior of Elastic/Plastic Non-Gaussian Rough Surfaces
,”
Tribol. Lett.
,
22
(
1
), pp.
1
13
.
39.
Zhang
,
H.
,
Zhong
,
W.
, and
Gu
,
Y.
, 1998, “
A Combined Parametric Quadratic Programming and Iteration Method for 3-D Elastic-Plastic Frictional Contact Problem Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
155
(
3–4
), pp.
307
324
.
40.
Stanley
,
H. M.
, and
Kato
,
T.
, 1997, “
FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
,
119
(
3
), pp.
481
485
.
41.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
, 1991, “
A Fast Solution of the Dry Contact Problem and the Associated Sub-Surface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
(
1
), pp.
128
133
.
42.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 2000, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
,
122
(
1
), pp.
36
41
.
43.
Brandt
,
A.
, and
Lubrecht
,
A. A.
, 1990, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
(
2
), pp.
348
370
.
44.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
, 2000,
Multilevel Methods in Lubrication, Tribology Series 37
,
Elsevier
,
Amsterdam
.
45.
Jäger
,
J.
, 1998, “
A New Principle in Contact Mechanics
,”
ASME J. Tribol.
,
120
(
4
), pp.
677
684
.
46.
Ciavarella
,
M.
, 1998, “
Tangential Loading of General Three-Dimensional Contacts
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
998
1003
.
47.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
48.
Cattaneo
,
C.
, 1938, “
Sul Contatto di Due Corpi Elastici: Distribuzione Locale degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
, pp.
342
–348, 434–436, 474–
478
.
49.
Dini
,
D.
, and
Nowell
,
D.
, 2003, “
Prediction of the Slip Zone Friction Coefficient in Flat and Rounded Contact
,”
Wear
,
254
(
3–4
), pp.
364
369
.
50.
Johnson
,
N. L.
, 1949, “
Systems of Frequency Curves Generated by Methods of Translation
,”
Biometrika
,
36
(
1–2
), pp.
149
176
.
51.
Kim
,
T. W.
, and
Bhushan
,
B.
, 2006, “
Generation of Composite Surfaces With Bimodal Distribution and Contact Analysis for Optimum Tribological Performance
,”
ASME J. Tribol.
,
128
(
4
), pp.
851
864
.
52.
Munisamy
,
R. L.
,
Hills
,
D. A.
, and
Nowell
,
D.
, 1994, “
Static Axisymmetric Contacts Subject to Shearing Forces
,”
ASME J. Appl. Mech.
,
61
(
2
), pp.
278
283
.
53.
Reina
,
S.
,
Paynter
,
R. J. H.
,
Hills
,
D. A.
, and
Dini
,
D.
, 2010, “
Determining the Coefficient of Friction Between Solids Without Sliding
,”
Wear
,
269
(
5–6
), pp.
339
343
.
You do not currently have access to this content.