What is often referred to as a Hertzian contact can undergo plasticity either at the macroscale, due to an accidental overload, or at an asperity scale, due to the presence of surface defects and/or roughness. An elastic solution does not explicitly consider the surface velocity or loading history, but it is also apparent that a moving (rolling) load will not yield the same residual stress and strain distribution as a purely vertical loading/unloading. Three-dimensional (3D) analysis is also more complex than the two-dimensional (2D) problem because it implies a change in the surface conformity. This paper presents the results of a numerical investigation of frictionless elastic-plastic elliptical point contacts with a moving load, as compared to a purely vertical (indentation) load. In the present analysis, both bodies may behave in an elastic-plastic mode. Both kinematic and isotropic hardening are considered to account for repeated rolling contacts. The contact pressure and the plastic strain are found to be reduced when the two bodies are elastic-plastic, as compared to the case in which one of the bodies remains elastic. Numerical results also indicate that at a given load intensity, the maximum contact pressure and equivalent plastic strain are affected by the contact geometry (circular and elliptical point contacts) and differ significantly when the load is moving as compared to purely vertical indentation. Although the maximum elastic contact pressure (Hertz solution) is often used as a control parameter for rolling contact fatigue analysis, whatever the geometry of the contact (point, elliptical, or line contact), the results presented here show that the effective contact pressure and subsequent residual strains are strongly dependent on the contact geometry in the elastic-plastic regime.

References

1.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic–Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.
2.
Sainsot
,
P.
,
Jacq
,
C.
, and
Nélias
,
D.
, 2002, “
A Numerical Model for Elastoplastic Rough Contact
,”
Comput. Model. Eng. Sci.
,
3
(
4
), pp.
497
506
.
3.
Boucly
,
V.
,
Nélias
,
D.
,
Liu
,
S.
,
Wang
,
Q. J.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
,
127
(
2
), pp.
355
364
.
4.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
,
127
(
3
), pp.
494
502
.
5.
Nélias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-In Model
,”
ASME J. Tribol.
,
128
(
2
), pp.
236
244
.
6.
Popescu
,
G.
,
Gabelli
,
A.
,
Morales-Espejel
,
G. E.
, and
Wemekamp
,
B.
, 2006, “
Micro-Plastic Material Model and Residual Fields in Rolling Contact
,”
J. ASTM Int.
,
3
(
5
), pp.
1
12
.
7.
Popescu
,
G.
,
Morales-Espejel
,
G. E.
,
Wemekamp
,
B.
, and
Gabelli
,
A.
, 2006, “
An Engineering Model for Three-Dimensional Elastic-Plastic Rolling Contact Analyses
,”
Tribol. Trans.
,
49
(
3
), pp.
387
399
.
8.
Boucly
,
V.
,
Nélias
,
D.
, and
Green
,
I.
, 2007, “
Modeling of Rolling and Sliding Contact Between Two Asperities
,”
ASME J. Tribol.
,
129
(
2
), pp.
235
245
.
9.
Nélias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
, 2007, “
A 3D Semi-Analytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
,
129
(
4
), pp.
761
771
.
10.
Nélias
,
D.
,
Antaluca
,
E.
, and
Boucly
,
V.
, 2007, “
Rolling of an Elastic Ellipsoid Upon an Elastic-Plastic Flat
,”
ASME J. Tribol.
,
129
(
4
), pp.
791
800
.
11.
Antaluca
,
E.
, and
Nélias
,
D.
, 2008, “
Contact Fatigue Analysis of a Dented Surface in a Dry Elastic-Plastic Circular Point Contact
,”
Tribol. Lett.
,
29
(
2
), pp.
139
153
.
12.
Chen
,
W. W.
,
Liu
,
S.
, and
Wang
,
Q. J.
, 2008, “
Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
75
(
1
), pp.
1
11
.
13.
Chen
,
W. W.
,
Wang
,
Q. J.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
, 2008, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, Sliding
,”
ASME J. Appl. Mech.
,
75
(
2
), pp.
1
12
.
14.
Wang
,
Z. J.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Wand
,
H.
, 2010, “
A Numerical Elastic-Plastic Contact Model for Rough Surfaces
,”
Tribol. Trans.
,
53
(
2
), pp.
224
238
.
15.
Bijak-Zochowski
,
M.
, and
Marek
,
P.
, 1997, “
Residual Stress in Some Elasto-Plastic Problems of Rolling Contact With Friction
,”
Int. J. Mech. Sci.
,
39
(
1
), pp.
15
32
.
16.
Jiang
,
Y.
,
Xu
,
B.
, and
Sehitoglu
,
H.
, 2002, “
Three-Dimensional Elastic–Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
,
124
(
4
), pp.
699
708
.
17.
Guo
,
Y. B.
, and
Barkey
,
M. E.
, 2004, “
FE-Simulation of the Effects of Machining-Induced Residual Stress Profile on Rolling Contact of Hard Machined Components
,”
Int. J. Mech. Sci.
,
46
(
3
), pp.
371
388
.
18.
Kermouche
,
G.
,
Kaiser
,
A. L.
,
Gilles
,
P.
, and
Bergheau
,
J. M.
, 2007, “
Combined Numerical and Experimental Approach of the Impact-Sliding Wear of a Stainless Steel in a Nuclear Reactor
,”
Wear
,
263
(
7–12
), pp.
1551
1555
.
19.
Chiu
,
Y. P.
, 1977, “
On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
587
590
.
20.
Chiu
,
Y. P.
, 1978, “
On the Stress Field and Surface Deformation in a Half-Space With a Cuboidal Zone in Which Initial Strains are Uniform
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
302
306
.
21.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.
22.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
23.
Liu
,
S.
, and
Wang
,
Q.
, 2003, “
Transient Thermoelastic Stress Field in a Half-Space
,”
ASME J. Tribol.
,
125
(
1
), pp.
33
43
.
24.
Lemaître
,
J.
, and
Chaboche
,
J. L.
, 1990,
Mechanics of Solids Materials
,
Cambridge University Press
,
Cambridge, UK
, Chap. V.
25.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
London
.
26.
Antoine
,
J. F.
,
Visa
,
C.
, and
Sauvey
,
C.
, 2006, “
Approximate Analytical Model for Hertzian Elliptical Contact Problems
,”
ASME J. Tribol.
,
128
(
3
), pp.
660
664
.
27.
Zait
,
Y.
,
Zolotarevsky
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2010, “
Multiple Normal Loading-Unloading Cycles of a Spherical Contact Under Stick Contact Condition
,”
ASME J. Tribol.
,
132
(
4
),
041401
.
28.
Bucaille
,
J. L.
,
Gauthier
,
C.
,
Felder
,
E.
, and
Schirrer
,
G.
, 2005, “
The Influence of Strain Hardening of Polymers on the Piling-up Phenomenon in Scratch Tests: Experiments and Numerical Modelling
,”
Wear
,
260
(
7–8
), pp.
803
814
.
You do not currently have access to this content.