Nanoscale sliding contacts are the major factors that influence the friction and result in wear in micro/nanoelectromechanical systems. Many experimental studies indicated that some surface textures could help improve the contact characteristics and reduce friction forces. However, the experimental results may be biased, due to the contamination of the sample surface or substantial defects in the materials. Numerical methods, such as continuum mechanics, meet great challenges when they are applied at length of nanoscale, and the time cost of molecular dynamics (MD) simulation can be extremely high. Therefore, multiscale method, which can capture atomistic behaviors in the region underlying micro/nano physical processes by MD simulations and models other regions by continuum mechanics, offers a great promise. Coupling MD simulation and finite element method, the multiscale method is used to investigate two dimensional nanoscale sliding contacts between a rigid cylindrical tip and an elastic substrate with textured surface, in which adhesive effects are considered. Two series of nanoscale surface textures with different asperity shapes, different asperity heights, and different spacings between asperities are designed. For different heights of asperities or different spacings between asperities, average potential energy, normal forces, mean normal forces, friction forces, and mean friction forces are compared to observe how these parameters influence friction characteristics; then, the optimal asperity height or spacing is discovered. Through the average potential energy, normal forces, mean normal forces, friction forces, and mean friction forces comparisons between smooth surface and textured surfaces, a better shape is advised to indicate that asperity shape plays an important role in friction force reduction. The influences of the indentation depth and radius of the rigid cylindrical tip are analyzed to find out the sensitivity of surface textures to these two parameters. Effects of sliding speed on the characteristics of nanoscale sliding contacts are also discussed. The results show that, with proper asperity height and proper spacing between asperities, surface textures can reduce friction forces effectively. Coefficients of friction (COFs) of all the cases are calculated and compared. Some negative COFs caused by significant adhesive effects are discovered, which are different from traditional macroscopic phenomena.

References

References
1.
Wang
,
G. B.
, and
Lei
,
Y. Z.
, 2005, “
Concerning and Developing Tribology, Promoting Sustainable Economic Development
,”
Prog. Nat. Sci.
,
15
(
15
), p.
571
(in Chinese).
2.
Pettersson
,
U.
, and
Jacobson
,
S.
, 2003, “
Influence of Surface Texture on Boundary Lubricated Sliding Contacts
,”
Tribol. Int.
,
36
(
11
), pp.
857
864
.
3.
Pettersson
,
U.
, and
Jacobson
,
S.
, 2004, “
Friction and Wear Properties of Micro Textured DLC Coated Surfaces in Boundary Lubricated Sliding
,”
Tribol. Lett.
,
17
(
3
), pp.
553
559
.
4.
Suh
,
A. Y.
,
Lee
,
S.-C.
, and
Polycarpou
,
A. A.
, 2004, “
Adhesion and Friction Evaluation of Textured Slider Surfaces in Ultra-Low Flying Head-Disk Interfaces
,”
Tribol. Lett.
,
17
(
4
), pp.
739
749
.
5.
Ronen
,
A.
,
Etsion
,
I.
, and
Kligerman
,
Y.
, 2001, “
Friction-Reducing Surface-Texturing in Reciprocating Automotive Components
,”
Tribol. Trans.
,
44
(
3
), pp.
359
366
.
6.
Kligerman
,
Y.
,
Etsion
,
I.
, and
Shinkarenko
,
A.
, 2005, “
Improving Tribological Performance of Piston Rings by Partial Surface Texturing
,”
ASME J. Tribol.
,
127
(
3
), pp.
632
638
.
7.
Etsion
,
I.
, 2005, “
State of the Art of Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
252
.
8.
Ryk
,
G.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2002, “
Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components
,”
Tribol. Trans.
,
45
(
4
), pp.
444
449
.
9.
Ranjan
,
R.
,
Lambeth
,
D. N.
,
Tromel
,
M.
,
Goglia
,
P.
, and
Li
,
Y.
, 1991, “
Laser Texturing for Low-Flying-Height Media
,”
J. Appl. Phys.
,
69
(
8
), pp.
5745
5747
.
10.
Etsion
,
I.
, 2004, “
Improving Tribological Performance of Mechanical Components by Laser Surface Texturing
,”
Tribol. Lett.
,
17
(
4
), pp.
733
737
.
11.
Zou
,
M.
,
Cai
,
L.
, and
Wang
,
H.
, 2006, “
Adhesion and Friction Studies of a Nanotextured Surface Produced by Spin Coating of Colloidal Silica Nanoparticle Solution
,”
Tribol. Lett.
,
21
(
1
), pp.
25
30
.
12.
Nosonovsky
,
M.
, and
Bhushan
,
B.
, 2007, “
Multiscale Friction Mechanisms and Hierarchical Surfaces in Nano- and Bio-tribology
,”
Mater. Sci. Eng. R.
,
58
(
3–5
), pp.
162
193
.
13.
Wakuda
,
M.
,
Yamauchi
,
Y.
,
Kanzaki
,
S.
, and
Yasuda
,
Y.
, 2003, “
Effect of Surface Texturing on Friction Reduction Between Ceramic and Steel Materials Under Lubricated Sliding Contact
,”
Wear
,
254
(
3–4
), pp.
356
363
.
14.
Zou
,
M.
,
Cai
,
L.
,
Wang
,
H.
,
Yang
,
D.
, and
Wyrobek
,
T.
, 2005, “
Adhesion and Friction Studies of a Selectively Micro/Nano-Textured Surface Produced by UV Assisted Crystallization of Amorphous Silicon
,”
Tribol. Lett.
,
20
(
1
), pp.
43
52
.
15.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
, 2006, “
Effect of Roughness Parameter and Grinding Angle on Coefficient of Friction When Sliding of Al-Mg Alloy over EN8 Steel
,”
ASME J. Tribol.
,
128
(
4
), pp.
697
704
.
16.
He
,
B.
,
Chen
,
W.
, and
Wang
,
Q. J.
, 2008, “
Surface Texture Effect on Friction of a Microtextured Poly(dimethylsiloxane) (PDMS)
,”
Tribol. Lett.
,
31
(
3
), pp.
187
197
.
17.
Kawasegi
,
N.
,
Sugimori
,
H.
,
Morimoto
,
H.
,
Morita
,
N.
, and
Hori
,
I.
, 2009, “
Development of Cutting Tools with Microscale and Nanoscale Textures to Improve Frictional Behavior
,”
Precis. Eng.
,
33
(
3
), pp.
248
254
.
18.
Pettersson
,
U.
, and
Jacobson
S.
, 2007, “
Textured Surfaces for Improved Lubrication at High Pressure and Low Sliding Speed of Roller/Piston in Hydraulic Motors
,”
Tribol. Int.
,
40
(
2
), pp.
355
359
.
19.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
, 2008, “
Effect of Surface Roughness Parameters and Surface Texture on Friction and Transfer Layer Formation in Tin-Steel Tribo-System
,”
J. Mater. Process. Technol.
,
208
(
1–3
), pp.
372
382
.
20.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
, 2008, “
On the Effect of Surface Texture on Friction and Transfer Layer Formation—A Study Using Al and Steel Pair
,”
Wear
,
265
(
11–12
), pp.
1655
1669
.
21.
Borghi
,
A.
,
Gualtieri
,
E.
,
Marchetto
,
D.
,
Moretti
,
L.
, and
Valeri
,
S.
, 2008, “
Tribological Effects of Surface Texturing on Nitriding Steel for High-Performance Engine Applications
,”
Wear
,
265
(
7–8
), pp.
1046
1051
.
22.
Tan
,
A. H.
, and
Cheng
,
S. W.
, 2006, “
A Novel Textured Design for Hard Disk Tribology Improvement
,”
Tribol. Int.
,
39
(
6
), pp.
506
511
.
23.
Moronuki
,
N.
, and
Furukawa
,
Y.
, 2003, “
Frictional Properties of the Micro-Textured Surface of Anisotropically Etched Silicon
,”
CIRP Ann.
,
52
(
1
), pp.
471
474
.
24.
Singh
,
R.
,
Melkote
,
S. N.
, and
Hashimoto
,
F.
, 2005, “
Frictional Response of Precision Finished Surfaces in Pure Sliding
,”
Wear
,
258
(
10
), pp.
1500
1509
.
25.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
, 2009, “
Influence of Surface Texture and Roughness Parameters on Friction and Transfer Layer Formation During Sliding of Aluminium Pin on Steel Plate
,”
Wear
,
267
(
9–10
), pp.
1534
1549
.
26.
Sugihara
,
T.
, and
Enomoto
,
T.
, 2009, “
Development of a Cutting Tool with a Nano/Micro-Textured Surface—Improvement of Anti-Adhesive Effect by Considering the Texture Patterns
,”
Precis. Eng.
,
33
(
4
), pp.
425
429
.
27.
Landman
,
U.
,
Luedtke
,
W. D.
,
Burnham
,
N. A.
, and
Colton
,
R. J.
, 1990, “
Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture
,”
Science
,
248
(
4954
), pp.
454
461
.
28.
Landman
,
U.
,
Luedtke
,
W. D.
, and
Ringer
,
E. M.
, 1992, “
Atomistic Mechanisms of Adhesive Contact Formation and Interfacial Processes
,”
Wear
,
153
(
1
), pp.
3
30
.
29.
Luan
,
B.
, and
Robbins
,
M. O.
, 2005, “
The Breakdown of Continuum Models for Mechanical Contacts
,”
Nature
,
435
, pp.
929
932
.
30.
Luan
,
B.
, and
Robbins
,
M. O.
, 2006, “
Contact of Single Asperities With Varying Adhesion: Comparing Continuum Mechanics to Atomistic Simulations
,”
Phys. Rev. E
,
74
(
2
), p.
026111
.
31.
Liu
,
T.
,
Liu
,
G.
,
Peter
,
W.
, and
Zhu
,
S.
, 2009, “
Study on Contact Characteristic of Nanoscale Asperities by Using Molecular Dynamics Simulations
,”
ASME J. Tribol.
,
131
(
2
), p.
022001
.
32.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
, 2000, “
Molecular Dynamics Simulation of Atomic-Scale Friction
,”
Phys. Rev. B
,
61
(
20
), p.
14007
.
33.
Mulliah
,
D.
,
Kenny
,
S. D.
, and
Smith
,
R.
, 2004, “
Modeling of Stick-Slip Phenomena Using Molecular Dynamics
,”
Phys. Rev. B
,
69
(
20
), p.
205407
.
34.
Smith
,
R.
,
Mulliah
,
D.
,
Kenny
,
S. D.
,
McGee
,
E.
,
Richter
,
A.
, and
Gruner
,
M.
, 2005, “
Stick Slip and Wear on Metal Surfaces
,”
Wear
,
259
(
1–6
), pp.
459
466
.
35.
Noreyan
,
A.
, and
Amar
,
J. G.
, 2008, “
Molecular Dynamics Simulations of Nanoscratching of 3C SiC
,”
Wear
,
265
(
7–8
), pp.
956
962
.
36.
Gao
,
Y.
,
Lu
,
C.
,
Huynh
,
N. N.
,
Michal
,
G.
,
Zhu
,
H. T.
, and
Tieu
,
A. K.
, 2009, “
Molecular Dynamics Simulation of Effect of Indenter Shape on Nanoscratch of Ni
,”
Wear
,
267
(
11
), pp.
1998
2002
.
37.
Tupper
,
K. J.
, and
Brenner
,
D. W.
, 1994, “
Molecular Dynamics Simulations of Friction in Self-Assembled Monolayers
,”
Thin Solid Films
,
253
(
1–2
), pp.
185
189
.
38.
Zhang
,
L. C.
,
Johnson
,
K. L.
, and
Cheong
,
W. C. D.
, 2001, “
A Molecular Dynamics Study of Scale Effects on the Friction of Single-Asperity Contacts
,”
Tribol. Lett.
,
10
(
1–2
), pp.
23
28
.
39.
Yang
,
J.
, and
Komvopoulos
,
K.
, 2005, “
A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction
,”
ASME J. Tribol.
,
127
(
3
), pp.
513
521
.
40.
Wu
,
C. D.
,
Lin
,
J. F.
, and
Fang
,
T. H.
, 2007, “
Molecular Dynamic Simulation and Characterization of Self-Assembled Monolayer under Sliding Friction
,”
Comput. Mater. Sci.
,
39
(
4
), pp.
808
816
.
41.
Capozza
,
R.
,
Fasolino
,
A.
,
Ferrario
,
M.
, and
Vanossi
,
A.
, 2008, “
Lubricated Friction on Nanopatterned Surfaces via Molecular Dynamics Simulations
,”
Phys. Rev. B
,
77
(
23
), p.
235432
.
42.
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2003, “
Atomistic/Continuum Coupling in Computational Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
,
11
, pp.
R33
R68
.
43.
Liu
,
W. K.
,
Karpov
,
E. G.
,
Zhang
,
S.
, and
Park
,
H. S.
, 2004, “
An Introduction to Computational Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1529
1578
.
44.
Gravemeier
,
V.
,
Lenz
,
S.
, and
Wall
,
W. A.
, 2008, “
Towards a Taxonomy for Multiscale Methods in Computational Mechanics: Building Blocks of Existing Methods
,”
Comput. Mech.
,
41
(
2
), pp.
279
291
.
45.
Liu
,
W. K.
,
Park
,
H. S.
,
Qian
,
D.
,
Karpov
,
E. G.
,
Kadowaki
,
H.
, and
Wagner
,
G. J.
, 2006, “
Bridging Scale Methods for Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
13–16
), pp.
1407
1421
.
46.
Park
,
H. S.
,
Karpov
,
E. G.
,
Liu
,
W. K.
, and
Klein
,
P. A.
, 2005, “
The Bridging Scale for Two-Dimensional Atomistic/Continuum Coupling
,”
Philos. Mag.
,
85
(
1
), pp.
79
113
.
47.
Belytschko
,
T.
, and
Xiao
,
S. P.
, 2003, “
Coupling Methods for Continuum Model With Molecular Model
,”
Int. J. Multiscale Comp. Eng.
,
1
, pp.
115
126
.
48.
Xiao
,
S. P.
, and
Belytschko
,
T.
, 2004, “
A Bridging Domain Method for Coupling Continua with Molecular Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1645
1669
.
49.
Shilkrot
,
L. E.
,
Miller
,
R. E.
, and
Curtin
,
W. A.
, 2002, “
Coupled Atomistic and Discrete Dislocation Plasticity
,”
Phys. Rev. Lett.
,
89
(
2
), p.
025501
.
50.
Shilkrot
,
L. E.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2002, “
A Coupled Atomistic/Continuum Model of Defects in Solids
,”
J. Mech. Phys. Solids
,
50
(
10
), pp.
2085
2106
.
51.
Karpov
,
E. G.
,
Yu
,
H.
,
Park
,
H. S.
,
Wang
,
Q. J.
, and
Qian
,
D.
, 2006, “
Multiscale Boundary Conditions in Crystalline Solids: Theory and Application to Nanoindentation
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6359
6379
.
52.
Luan
,
B. Q.
,
Hyun
,
S.
,
Molinari
,
J. F.
,
Bernstein
,
N.
, and
Mark
,
O. R.
, 2006, “
Multiscale Modeling of Two-Dimensional Contacts
,”
Phys. Rev. E
,
74
(
4
), p.
046710
.
53.
Agrawal
,
P. M.
,
Rice
,
B. M.
, and
Thompson
,
D. L.
, 2002, “
Predicting Trends in Rate Parameters for Self-Diffusion on FCC Metal Surfaces
,”
Surf. Sci.
,
515
, pp.
21
35
.
54.
Doll
,
J. D.
, and
Mcdowell
,
H. K.
, 1982, “
Theoretical Studies of Surface Diffusion: Self-Diffusion in the FCC (111) System
,”
J. Chem. Phys.
,
77
(
1
), pp.
479
483
.
55.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
, 1982, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
,
76
(
1
), pp.
637
649
.
56.
Cha
,
P. R.
,
Srolovitz
,
D. J.
, and
Vanderlick
,
T. K.
, 2004, “
Molecular Dynamics Simulation of Single Asperity Contact
,”
Acta Mater.
,
52
(
13
), pp.
3983
3996
.
57.
Jeng
,
Y. R.
, and
Peng
,
S. R.
, “
Investigation into the Lateral Junction Growth of Single Asperity Contact Using Static Atomistic Simulations
,”
Appl. Phys. Lett.
,
94
(
16
), p.
163103
.
You do not currently have access to this content.