Abstract

In this paper, an asymptotic expansion is used to derive a description of Phan–Tien– Tanner (PTT)/Oldroyd-B flows in the thin film situation without the classical “upper convective maxwell”(UCM) assumption. We begin with a short presentation of the Phan–Thien–Tanner/Oldroyd-B models, which introduce viscoelastic effects in a solute–solvent mixture. The three-dimensional flow is described using five parameters, namely the Deborah number (De) (or the relaxation parameter λ), the viscosity ratio r, the bulk fluid viscosity η, the material slip parameter a related to the “convected derivative” and an elongation number κ. Then we focus on the thin film assumption and the related asymptotic analysis that allows us to derive a reduced model. A perturbation procedure for “not too small” values of κ allows us to obtain further results such as an asymptotic “effective viscosity/ shear rate” law, which appears to be a perturbation of the double Rabinowisch model, whose parameters are completely defined by those of the original three-dimensional model. And last a numerical procedure is proposed based on a penalized Uzawa method, to compute the corresponding solution. This algorithm can also be used for any generalized double Newtonian shear thinning Carreau law.

References

1.
Boucherit
,
H.
,
Lahmar
,
M.
,
Bou-Said
,
B.
, and
Tichy
,
J.
, 2010, “
Comparison of Non-Newtonian Constitutive Laws in Hydrodynamic Lubrication
,”
Tribol. Lett.
,
40
(
1
), pp.
49
57
.
2.
Carreau
,
D. J.
,
Kee
,
D. D.
, and
Daroux
,
M.
, 1979, “
An Analysis of the Viscous Behaviour of Polymeric Solutions
,”
Can. J. Chem. Eng.
,
57
(
2
), pp.
135
141
.
3.
Yasuda
,
K.
,
Armstrong
,
R. C.
, and
Cohen
,
R. E.
, 1981, “
Shear Flow Properties of Concentrated Solutions of Linear and Star Branched Polystyrenes
,”
Rheol. Acta
,
20
(
2
), pp.
163
170
.
4.
Bair
,
S.
, and
Khonsari
,
M. M.
, 2005, “
Generalized Reynolds Equations for Line Contact with Double-Newtonian Shear-Thinning
,”
Tribol. Lett.
,
18
(
4
), pp.
513
520
.
5.
Bair
,
S.
, and
Qureshi
,
F.
, 2003, “
The High Pressure Rheology of Polymer-Oil Solutions
,”
Tribol. Int.
,
36
(
8
), pp.
637
645
.
6.
Bair
,
S.
, 2002, “
The Shear Rheology of Thin Compressed Liquid Films
,”
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
,
216
(
1
), pp.
1
17
.
7.
Bair
,
S.
, and
Qureshi
,
F.
, 2003, “
The Generalized Newtonian Fluid Model and Elastohydrodynamic Film Thickness
,”
ASME J. Tribology
,
125
(
1
), pp.
70
75
.
8.
Bair
,
S.
,
Vergne
,
P.
, and
Marchetti
,
M.
, 2002, “
The Effect of Shear-Thinning on Film Thickness for Space Lubricants
,”
STLE Tribol. Trans.
,
45
(
3
), pp.
330
333
.
9.
Cross
,
M. M.
, 1965, “
Rheology of Non-Newtonian Fluids: A New Plot for Pseudoplastic Systems
,”
J. Colloid Sci.
,
20
(
5
), pp.
417
437
.
10.
Bair
,
S.
, 2006, “
A Reynold-Ellis Equation for Line Contact with Shear-Thinning
,”
Tribol. Int.
,
39
(
4
), pp.
310
316
.
11.
Bair
,
S.
, and
Khonsari
,
M. M.
, 2006, “
Reynolds Equation for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation
,”
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
,
220
(
4
), pp.
365
374
.
12.
Lin
,
J. R.
, 2001, “
Non-Newtonian Effects on the Dynamic Characteristics of One-Dimensional Slider Bearings: Rabinowisch Fluid Model
,”
Tribol. Lett.
,
10
(
4
), pp.
237
243
.
13.
Swamy
,
S. T. N.
,
Prabhu
,
B. S.
, and
Rao
,
B. V. A.
, 1975, “
Stiffness and Damping Characteristics of Finite Width Journal Bearings With a Non-Newtonian Film and Their Application to Instability Prediction
,”
Wear
,
32
(
3
), pp.
379
390
.
14.
Conry
,
T. F.
,
Wang
,
S.
, and
Cusano
,
C.
, 1987, “
A Reynolds Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
ASME J. Tribol.
,
109
(
4
), pp.
648
658
.
15.
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
, 1998, “
On Lubricant Transport Conditions in Elastohydrodynamic Conjunctions
,”
Proc. R. Soc. A
,
454
(1971), pp.
763
787
.
16.
Hooke
,
C. J.
, 2000, “
The Behaviour of Low-Amplitude Surface Roughness Under Lines Contacts: Non-Newtonian Fluids
,”
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
,
214
(
3
), pp.
253
265
.
17.
Greenwood
,
J. A.
, 2000, “
Two-Dimensional Flow of a Non-Newtonian Lubricant
,”
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
,
214
(
1
), pp.
29
41
.
18.
Tichy
,
J.
, 1996, “
Non-Newtonian Lubrication With the Convective Maxwell Model
,”
ASME J. Tribol.
,
118
(
2
), pp.
344
349
.
19.
Talay Akyildiz
,
F.
, and
Bellout
,
H.
, 2004, “
Viscoelastic Lubrification With Phan-Thien-Tanner Fluid (PTT)
,”
ASME J. Tribol.
,
126
(
2
), pp.
288
291
.
20.
Zhang
,
R.
, and
Li
,
X. K.
, 2005, “
Non-Newtonian Effects on Lubricant Thin Film flows
,”
J. Eng. Math.
,
51
(
1
), pp.
1
13
.
21.
Georgiou
,
G. C.
, and
Vlassopoulos
,
D.
, 1998, “
On the Stability of the Simple Shear Flow of a Johnson-Segalman Fluid
,”
J. Non-Newtonian Fluid Mech.
,
75
(
1
), pp.
77
97
.
22.
Fyrillas
,
M. M.
,
Georgiou
,
G. C.
, and
Vlassopoulos
,
D.
, 1999, “
Time Dependant Plane Poiseuille Flow of a Johnson-Segalman Fluid
,”
J. Non-Newtonian Fluid Mech.
,
82
(
1
), pp.
105
123
.
23.
Bayada
,
G.
,
Chupin
,
L.
, and
Grec
,
B.
, 2009, “
Viscoelastic Fluids in Thin Domains: A Mathematical Proof
,”
Asymptotic Anal.
,
64
(
3–4
), pp.
185
211
.
24.
Tanner
,
R. I.
, and
Walters
,
K.
, 1998,
Rheology: An Historical Perspective
,
Elsevier
,
Amsterdam
, Vol.
7
, p.
268
.
25.
Joseph
,
D. D.
, 1998,
Fluid Dynamics of Viscoelastic Liquids
,
Springer
,
New York
, Vol.
84
, p.
754
.
26.
Bayada
,
G.
,
Chupin
,
L.
, and
Martin
,
S.
, 2007, “
Viscoelastic Fluids in a Thin Domain
,”
Q. Appl. Math.
,
65
(
4
), pp.
625
651
.
27.
Szeri
,
A. Z.
,
Fluid Film Lubrication: Theory and Design
(
Cambridge University
,
New York
, 1998) p.
428
.
28.
Tanner
,
R. I.
, 2000,
Engineering Rheology
,
Oxford University
,
New York
, Vol.
52
, p.
592
.
You do not currently have access to this content.