Contact between a slider and a magnetic recording disk is modeled as transient contact of a sphere on a moving flat. The sphere is assumed to be rigid, and the flat is treated as an elastic-plastic body with isotropic hardening. Heat generation is related to friction at the contact interface. Dimensionless solutions are obtained for maximum temperature rise, maximum contact force, maximum contact area, and maximum penetration as a function of dimensionless vertical initial velocity of the sphere. It is observed that transient thermomechanical contact with elastic-plastic deformation deviates from “classical theories” for dynamic elastic and quasi-static elastic-plastic contacts as the dimensionless vertical initial velocity of the sphere increases. The results are applied to optimize the slider-disk interface in a hard disk drive with respect to slider-disk contacts.

References

1.
Suk
,
M.
,
Dening
,
P.
, and
Gillis
,
D.
, 2000, “
Magnetic Erasures Due to Impact Induced Interfacial Heating and Magnetostriction
,”
ASME J. Tribol
,
122
(
1
), pp.
264
268
.
2.
Ovcharenko
,
A.
,
Yang
,
M.
,
Chun
,
K.
, and
Talke
,
F. E.
, 2010, “
Simulation of Magnetic Erasure due to Transient Slider/Disk Contacts
,”
IEEE Trans. Magn.
,
46
(
3
), pp.
770
777
.
3.
Kral
,
E. R.
, and
Komvopoulos
,
K.
, 1997, “
Three-Dimensional Finite Element Analysis of Subsurface Stress and Strain Fields Due to Sliding Contact on an Elastic-Plastic Layered Medium
,”
ASME J. Tribol.
,
119
(
2
), pp.
332
341
.
4.
Tao
,
Q.
,
Lee
,
H. P.
, and
Lim
,
S. P.
, 2003, “
Contact Analysis of Impact in Magnetic Head Disk Interfaces
,”
Tribol. Int.
,
36
(
1
), pp.
49
56
.
5.
Katta
,
R. R.
,
Nunez
,
E. E.
,
Polycarpou
,
A. A.
, and
Lee
,
S.-C.
, 2009, “
Plane Strain Sliding Contact of Multilayer Magnetic Storage Thin-Films Using the Finite Element Method
,”
Microsyst. Technol.
,
15
(
7
), pp.
1097
1110
.
6.
Katta
,
R. R.
,
Polycarpou
,
A. A.
,
Hanchi
,
J. V.
, and
Crone
,
R. M.
, 2009, “
High Velocity Oblique Impact and Coefficient of Restitution for Head Disk Interface Operational Shock
,”
ASME J. Tribol.
,
131
(
2
), pp.
021303
021312
.
7.
Katta
,
R. R.
,
Polycarpou
,
A. A.
,
Hanchi
,
J. V.
, and
Roy
,
M.
, 2009, “
Analytical and Experimental Elastic-Plastic Impact Analysis of a Magnetic Storage Head-Disk Interface
,”
ASME J. Tribol.
,
131
(
1
), p.
011902
.
8.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1994, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
(
1
), pp.
167
174
.
9.
Bos
,
J.
, and
Moes
,
H.
, 1995, “
Frictional Heating of Tribological Contacts
,”
ASME J. Tribol.
,
117
(
1
), pp.
171
177
.
10.
Gao
,
J.
,
Lee
,
S. C.
,
Ai
,
X.
, and
Nixon
,
H.
, 2000, “
An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts
,”
ASME J. Tribol.
,
122
(
3
), pp.
519
523
.
11.
Laraqi
,
N.
, 2003, “
An Exact Explicit Analytical Solution of the Steady-State Temperature in a Half Space Subjected to a Moving Circular Heat Source
,”
ASME J. Tribol.
,
125
(
4
), pp.
859
862
.
12.
Wen
,
J.
, and
Khonsari
,
M. M.
, 2009, “
On the Temperature Rise of Bodies Subjected to Unidirectional or Oscillating Frictional Heating and Surface Convective Cooling
,”
Tribol. Trans.
,
52
(
3
), pp.
310
322
.
13.
Bansal
,
G. D.
, and
Streator
,
J. L.
, 2009, “
A Method for Obtaining the Temperature Distribution at the Interface of Sliding Bodies
,”
Wear
,
266
(
7–8
), pp.
721
732
.
14.
Kulkarni
,
S. M.
,
Rubin
,
C. A.
, and
Hahn
,
G. T.
, 1991, “
Elastoplastic Coupled Temperature-Displacement Finite-Element Analysis of 2-Dimensional Rolling-Sliding Contact With a Translating Heat-Source
,”
ASME J. Tribol.
,
113
(
1
), pp.
93
101
.
15.
Gupta
,
V.
,
Bastias
,
P.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1993, “
Elastoplastic Finite-Element Analysis of 2-D Rolling-Plus-Sliding Contact With Temperature-Dependent Bearing Steel Material Properties
,”
Wear
,
169
(
2
), pp.
251
256
.
16.
Wang
,
Q. J.
, and
Liu
,
G.
, 1999, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
Tribol. Trans.
,
42
(
4
), pp.
763
770
.
17.
Liu
,
G.
,
Wang
,
Q.
, and
Liu
,
S.
, 2001, “
A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact
,”
ASME J. Tribol.
,
123
(
3
), pp.
595
602
.
18.
Liu
,
S.
, and
Wang
,
Q.
, 2001, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
,
123
(
1
), pp.
17
26
.
19.
Liu
,
S.
,
Wang
,
Q.
, and
Harris
,
S. J.
, 2003, “
Surface Normal Thermoelastic Displacement in Moving Rough Contacts
,”
ASME J. Tribol.
,
125
(
4
), pp.
862
870
.
20.
Yu
,
H.
,
Liu
,
S.
,
Wang
,
Q. J.
, and
Chung
,
Y. W.
, 2004, “
Influence of Temperature-Dependent Yield Strength on Thermomechanical Asperity Contacts
,”
Tribol. Lett.
,
17
(
2
), pp.
155
163
.
21.
Liu
,
S.
, and
Wang
,
Q.
, 2003, “
Transient Thermoelastic Stress Fields in a Half-Space
,”
ASME J. Tribol.
,
125
(
1
), pp.
33
43
.
22.
Ye
,
N.
, and
Komvopoulos
,
K.
, 2003, “
Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermomechanical Surface Loading
,”
ASME J. Tribol.
,
125
(
1
), pp.
52
59
.
23.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
, 2004, “
Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media With Patterned Surfaces
,”
ASME J. Tribol.
,
126
(
1
), pp.
9
17
.
24.
Boucly
,
V.
,
Nelias
,
D.
,
Liu
,
S.
,
Wang
,
Q. J.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
,
127
(
2
), pp.
355
364
.
25.
Yu
,
N.
,
Polycarpou
,
A. A.
, and
Hanchi
,
J. V.
, 2008, “
Elastic Contact Mechanics-Based Contact and Flash Temperature Analysis of Impact-Induced Head Disk Interface Damage
,”
Microsyst. Technol.
,
14
(
2
), pp.
215
227
.
26.
Chen
,
W. W.
, and
Wang
,
Q. J.
, 2008, “
Thermomechanical Analysis of Elastoplastic Bodies in a Sliding Spherical Contact and the Effect of Sliding Speed, Heat Partition, and Thermal Softening
,”
ASME J. Tribol.
,
130
(
4
), p.
041402
.
27.
Ozer
,
A.
, and
Sofuoglu
,
H.
, 2009, “
Thermo-Mechanical Analysis of the Magnetic Head-Disk Interface With a Fractal Surface Description
,”
Wear
,
266
(
11–12
), pp.
1185
1197
.
28.
Hallquist
,
J. O.
, 2006,
ls-dyna Theoretical Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
29.
Blok
,
H.
, 1937, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions
,”
Proceedings of the Institute of Mechanical Engineers General Discussion of Lubrication
,
Institute of Mechanical Engineers
,
London
, Vol.
2
, pp.
222
235
.
30.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University
,
Cambridge
.
31.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2006, “
The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5736
5749
.
32.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
, 2005, “
Unloading of an Elastic–Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3716
3729
.
33.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME Trans. J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
34.
Yu
,
N.
,
Polycarpou
,
A. A.
, and
Hanchi
,
J. V.
, 2010, “
Thermomechanical Finite Element Analysis of Slider-disk Impact in Magnetic Storage Thin Films Disks
,”
Tribol. Int.
,
43
(
4
), pp.
737
745
.
35.
ls-dyna Keword User’s Manual (version 971), 2007, Livermore Software Technology Corporation, Livermore, CA.
You do not currently have access to this content.