The background of the present study is the rolling contact fatigue (RCF) in a brittle polymer disk. The disk has been tested on a two disk machine, under controlled normal and tangential loads, with no global slip. After several million cycles and under different operating conditions, it has been observed that (1) the tangential load highly influences the RCF phenomenon, (2) a network of regularly spaced cracks appears, and (3) in the driving position, the RCF phenomenon develops faster. To explain these observations, a numerical model based on the finite element method (FEM) has been built: the cracks have been quite simply modeled, stick-slip has been chosen as the friction model, and the disk-on-disk contact has been replaced by a disk-on-plane contact. To study the influence of some of the operating conditions, the design of experiments (DOE) techniques has been used. The statistical postprocessing associated to DOE has confirmed the experimental observations with a good reliability. In addition, with some mechanical considerations, scenarios of what experimentally happens are proposed. The association FEM/DOE is an original and efficient way to explain phenomena in the field of RCF: the accuracy of the FEM coupled with DOE statistical treatments make it possible to have a good predictability despite some uncontrolled parameters.

References

References
1.
Ishida
,
M.
, and
Abe
,
N.
, 1996, “
Experimental Study on Rolling Contact Fatigue from the Aspect of Residual Stress
,”
Wear
,
191
(
1–2
), pp.
65
71
.
2.
Francisco
,
A.
,
Abbouchi
,
H.
, and
Villechaise
,
B.
, 2010, “
Study of a Brittle Transparent Disk Under Dry RCF Conditions
,”
ASME J. Tribol.
,
132
(
3
), pp.
1
8
.
3.
Donzella
,
G.
,
Faccoli
,
M.
,
Ghidini
,
A.
,
Mazzu
,
A.
, and
Roberti
,
R.
, 2005, “
The Competitive Role of Wear and RCF in a Rail Steel
,”
Eng. Fract. Mech.
,
72
(
2
), pp.
287
308
.
4.
5.
Fletcher
,
D. I.
,
Smith
,
L.
, and
Kapoor
,
A.
, 2009, “
Rail Rolling Contact Fatigue Dependence on Friction, Predicted Using Fracture Mechanics With a Three-Dimensional Boundary Element Model
,”
Eng. Fract. Mech.
,
76
(
17
), pp.
2612
2625
.
6.
Muster
,
H.
,
Schmedders
,
H.
,
Wick
,
K.
, and
Pradier
,
H.
, 1996, “
Rail Rolling Contact Fatigue. The Performance of Naturally Hard and Head-Hardened Rails in Track
,”
Wear
,
191
(
1–2
), pp.
54
64
.
7.
Gao
,
N.
, and Dwyer-
Joyce
,
R. S.
, 2000, “
The Effects of Surface Defects on the Fatigue of Water and Oil Lubricated Contacts
”,
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
214
(
6
), pp.
611
626
.
8.
Heyder
,
R.
, and
Girsch
,
G.
, 2005, “
Testing of HSH® Rails in High-Speed Tracks to Minimise Rail Damage
,”
Wear
,
258
(
7–8
), pp.
1014
1021
.
9.
Murakami
,
Y.
,
Sakae
,
C.
,
Ichimaru
,
K.
, and
Morita
,
T.
, 1997, “
Experimental and Fracture Mechanics Study of the Pit Formation Mechanism under Repeated Lubricated Rolling-Sliding Contact: Effects of Reversal of Rotation and Change of the Driving Roller
,”
ASME J. Tribol.
,
119
(
4
), pp.
788
796
.
10.
Beynon
,
J. H.
,
Garnham
,
J. E.
, and
Sawley
,
K. J.
, 1996, “
Rolling Contact Fatigue of Three Pearlitic Rail Steels
,”
Wear
,
192
(
1–2
), pp.
94
111
.
11.
Tyfour
,
W. R.
,
Beynon
,
J. H.
, and
Kapoor
,
A.
, 1996, “
Deterioration of Rolling Contact Fatigue Life of Pearlitic Rail Steel Due to Dry-Wet Rolling-Sliding Line Contact
,”
Wear
,
197
(
1–2
), pp.
255
265
.
12.
Abbouchi
,
H.
, 2008, “
A Study on Rolling Contact Fatigue. Experimental Approach With a Brittle Material, and Numerical Simulation
,” Ph.D. thesis, Université de Poitiers, France.
13.
Carter
,
F. W.
, 1926, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. London, Ser. A
,
112
(
760
), pp.
151
157
.
14.
Al-Sabti
,
S. L.
, and
Stolarski
,
T. A.
, 1998, “
Surface Fatigue of Brittle Polymers in Rolling Line Contact
,”
Tribol. Int.
,
31
(
11
), pp.
695
699
.
15.
Kaneta
,
M.
, and
Murakami
,
Y.
, 1987, “
Effects of Oil Hydraulic Pressure on Surface Crack Growth in Rolling/Sliding Contact
,”
Tribol. Int.
,
20
(
4
), pp.
210
217
.
16.
Keer
,
L. M.
, and
Bryant
,
M. D.
, 1983, “
A Pitting Model for Rolling Contact Fatigue
,”
ASME J. Lubr. Technol.
,
105
(
2
), pp.
198
205
.
17.
Ribeaucourt
,
R.
,
Baietto Dubourg
,
M. C.
, and
Gravouil
A.
, 2007, “
A New Fatigue Crack Propagation Model With the Coupled X-FEM / LATIN Methods
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
33–34
), pp.
3230
3247
.
18.
Bower
,
A. F.
, 1988, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME J. Tribol.
,
110
(
4
), pp.
704
711
.
19.
Dubourg
,
M. C.
, and
Villechaise
,
B.
, 1992, “
Analysis of Multiple Fatigue Cracks—Part I: Theory
,”
ASME J. Tribol.
,
114
(
3
), pp.
455
461
.
20.
Dubourg
,
M. C.
,
Godet
,
M.
, and
Villechaise
,
B.
, 1992, “
Analysis of Multiple Fatigue Cracks—Part II: Results
,”
ASME J. Tribol.
,
114
(
3
), pp.
462
468
.
21.
Dubourg
,
M. C.
, and
Lamacq
,
V.
, 2002, “
A Predictive Rolling Contact Fatigue Crack Growth Model: Onset of Branching, Direction, and Growth-Role of Dry and Lubricated Conditions on Crack Patterns
,”
ASME J. Tribol.
,
124
(
4
), pp.
680
688
.
22.
Kaneta
,
M.
,
Yatsuzuka
,
H.
, and
Murakami
,
Y.
, 1985, “
Mechanism of Crack Growth in Lubricated Rolling/Sliding Contact
,”
ASLE Trans.
,
28
(
3
), pp.
407
414
.
23.
Kaneta
,
M.
,
Suetsugu
,
M.
, and
Murakami
,
Y.
, 1986, “
Mechanism of Surface Crack Growth in Lubricated Rolling/sliding Spherical Contact
,”
ASME J. App. Mech.
,
53
(
2
), pp.
354
360
.
24.
Kaneta
,
M.
, and
Murakami.
,
Y.
, 1991, “
Propagation of Semi-Elliptical Surface Cracks in Lubricated Rolling/Sliding Elliptical Contacts
,”
ASME J. Tribol.
,
113
(
2
), pp.
270
275
.
25.
Chateauminois
,
A.
,
Baietto Dubourg
,
M.-C.
,
Gauthier
C.
, and
Schirrer
,
R.
, 2005, “
In Situ Analysis of the Fragmentation of Polystyrene Films within Sliding Contacts
,”
Trib. Int.
,
38
(
11–12
), pp.
931
942
.
26.
Baietto
,
M.-C.
,
Rannou
,
J.
,
Gravouil
,
A.
,
Pelletier
,
H.
,
Gauthier
,
C.
, and
Schirre
,
R.
, 2010, “
3D Crack Network Analysis during a Scratch Test of a Polymer: A Combined Experimental and Multigrid X-FEM Based Numerical Approach
,”
Trib. Int.
, (in press).
27.
Soda
,
N.
and
Yamamoto
,
T.
, 1982, “
Effect of Tangential Traction and Roughness on Crack Initiation/Propagation During Rolling Contact
,”
ASLE Trans.
,
25
(
2
), pp.
198
206
.
28.
Johnson
,
K. L.
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
1985) ISBN 0-521-25576-7.
29.
Msc.Marc and Msc.Marc Mentat, Release Guide, Version 2005.
30.
Mason
,
R. L.
,
Gunst
,
R. F.
, and
Hess
,
J. L.
, 2003,
Statistical Design and Analysis of Experiments, with Applications to Engineering and Science
,
2nd ed.
,
John Wiley & Sons Inc.
,
Hoboken, New Jersey
, ISBN 0-471-37216-1.
31.
Gonzalez
,
J. A.
, and
Abascal
,
R.
, 2000, “
Solving 2D Rolling Problems Using the NORM-TANG Iteration and Mathematical Programming
,”
Comput. Struct.
,
78
(
1
), pp.
149
160
.
32.
Montgomery
,
D. C.
, 2005,
Design and Analysis of Experiments
,
6th ed.
,
John Wiley & Sons Inc.
,
New York
, ISBN 978-0-471-48735-7.
You do not currently have access to this content.