This study presents an efficacy comparison of iterative solution methods for solving the compressible-fluid Reynolds equation in modeling air- or gas-lubricated bearings. A direct fixed-point iterative (DFI) method and Newton’s method are employed to transform the Reynolds equation in a form that can be solved iteratively. The iterative solution methods examined are the Gauss–Seidel method, the successive over-relaxation (SOR) method, the preconditioned conjugate gradient (PCG) method, and the multigrid method. The overall solution time is affected by both the transformation method and the iterative method applied. In this study, Newton’s method shows its effectiveness over the straightforward DFI method when the same iterative method is used. It is demonstrated that the use of an optimal relaxation factor is of vital importance for the efficiency of the SOR method. The multigrid method is an order faster than the PCG and optimal SOR methods. Also, the multigrid and PCG methods involve an extended coding work and are less flexible in dealing with gridwork and boundary conditions. Consequently, a compromise has to be made in terms of ease of use as well as programming effort for the solution of the compressible-fluid Reynolds equation.

1.
Saad
,
Y.
, and
Van der Vorst
,
H. A.
, 2000, “
Iterative Solution of Linear Systems in the 20th Century
,”
J. Comput. Appl. Math.
0377-0427,
123
, pp.
1
33
.
2.
Simoncini
,
V.
, and
Szyld
,
D. B.
, 2007, “
Recent Computational Developments in Krylov Subspace Methods for Linear Systems
,”
Numer. Linear Algebra Appl.
1070-5325,
14
, pp.
1
59
.
3.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
4.
Wang
,
N.
, and
Chang
,
C.
, 1999, “
An Application of Newton’s Method to the Lubrication Analysis of Air-Lubricated Bearing
,”
Tribol. Trans.
1040-2004,
42
(
2
), pp.
419
424
.
5.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
, 2004, “
Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow
,”
ASME J. Tribol.
0742-4787,
126
, pp.
542
546
.
6.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
, 2004, “
On the Limiting Load-Carrying Capacity of Foil Bearings
,”
ASME J. Tribol.
0742-4787,
126
, pp.
817
818
.
7.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
, 2006, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
, pp.
534
541
.
8.
Ruiz
,
R. O.
,
Liscia
,
M. H. D.
,
Medina
,
L. U.
, and
Díaz
,
S. E.
, 2008, “
Asynchronous Dynamic Coefficients of a Three-Lobe Air Bearing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
052502
.
9.
Lee
,
D.
, and
Kim
,
D.
, 2010, “
Thermohydrodynamic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
0742-4787,
132
, p.
021704
.
10.
Kim
,
D.
, 2007, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
0742-4787,
129
, pp.
354
364
.
11.
Sim
,
K.
, and
Kim
,
D.
, 2007, “
Design of Flexure Pivot Tilting Pads Gas Bearings for High-Speed Oil-Free Microturbomachinery
,”
ASME J. Tribol.
0742-4787,
129
, pp.
112
119
.
12.
Iordanoff
,
I.
,
Said
,
B. B.
,
Mezianne
,
A.
, and
Berthier
,
Y.
, 2008, “
Effect of Internal Friction in the Dynamic Behavior of Aerodynamic Foil Bearings
,”
Tribol. Int.
0301-679X,
41
, pp.
387
395
.
13.
Chun
,
S. M.
, 2004, “
Thermohydrodynamic Lubrication Analysis of High-Speed Journal Bearing Considering Variable Density and Variable Specific Heat
,”
Tribol. Int.
0301-679X,
37
, pp.
405
413
.
14.
Feldman
,
Y.
,
Kligerman
,
Y.
,
Etsion
,
I.
, and
Haber
,
S.
, 2006, “
The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces
,”
ASME J. Tribol.
0742-4787,
128
, pp.
345
350
.
15.
Chun
,
S. M.
, 2008, “
Aeration Effects on the Performance of a Turbocharger Journal Bearing
,”
Tribol. Int.
0301-679X,
41
, pp.
296
306
.
16.
Yang
,
D. W.
,
Chen
,
C. H.
,
Kang
,
Y.
,
Hwang
,
R. M.
, and
Shyr
,
S. S.
, 2009, “
Influence of Orifices on Stability of Rotor-Aerostatic Bearing System
,”
Tribol. Int.
0301-679X,
42
, pp.
1206
1219
.
17.
Feng
,
K.
, and
Kaneko
,
S.
, 2009, “
Thermohydrodynamic Study of Multiwound Foil Bearing Using Lobatto Point Quadrature
,”
ASME J. Tribol.
0742-4787,
131
, p.
021702
.
18.
Feng
,
K.
, and
Kaneko
,
S.
, 2010, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite-Element Shell Model
,”
ASME J. Tribol.
0742-4787,
132
, p.
021706
.
19.
Park
,
D. -J.
,
Kim
,
C. -H.
,
Jang
,
G. -H.
, and
Lee
,
Y. -B.
, 2008, “
Theoretical Considerations of Static and Dynamic Characteristics of Air Foil Thrust Bearing With Tilt and Slip Flow
,”
Tribol. Int.
0301-679X,
41
, pp.
282
295
.
20.
Lee
,
C. C.
, and
You
,
H. I.
, 2009, “
Characteristics of Externally Pressurized Porous Gas Bearings Considering Structure Permeability
,”
Tribol. Trans.
1040-2004,
52
, pp.
768
776
.
21.
Mongkolwongrojn
,
M.
,
Aiumpornsin
,
C.
, and
Thammakosol
,
K.
, 2006, “
Theoretical Investigation in Thermoelastohydrodynamic Lubrication With Non-Newtonian Lubricants Under Sudden Load Change
,”
ASME J. Tribol.
0742-4787,
128
, pp.
771
777
.
22.
Kennedy
,
F. E.
,
Van Citters
,
D. W.
,
Wongseedakaew
,
K.
, and
Mongkolwongrojn
,
M.
, 2007, “
Lubrication and Wear of Artificial Knee Joint Materials in a Rolling/Sliding Tribotester
,”
ASME J. Tribol.
0742-4787,
129
, pp.
326
335
.
23.
Wang
,
Y.
,
Li
,
H.
,
Tong
,
J.
, and
Yang
,
P.
, 2004, “
Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Tribol. Int.
0301-679X,
37
, pp.
773
782
.
24.
Mongkolwongrojn
,
M.
,
Wongseedakaew
,
K.
, and
Kennedy
,
F. E.
, 2010, “
Transient Elastohydrodynamic Lubrication in Artificial Knee Joint With Non-Newtonian Fluids
,”
Tribol. Int.
0301-679X,
43
, pp.
1017
1026
.
25.
Mourier
,
L.
,
Mazuyer
,
D.
,
Lubrecht
,
A. A.
, and
Donnet
,
C.
, 2006, “
Transient Increase of Film Thickness in Micro-Textured EHL Contacts
,”
Tribol. Int.
0301-679X,
39
, pp.
1745
1756
.
26.
Mongkolwongrojn
,
M.
, and
Aiumpronsin
,
C.
, 2010, “
Stability Analysis of Rough Journal Bearings Under TEHL With Non-Newtonian Lubricants
,”
Tribol. Int.
0301-679X,
43
, pp.
1027
1034
.
27.
Wang
,
J.
,
Hashimoto
,
T.
,
Nishikawa
,
H.
, and
Kaneta
,
M.
, 2005, “
Pure Rolling Elastohydrodynamic Lubrication of Short Stroke Reciprocating Motion
,”
Tribol. Int.
0301-679X,
38
, pp.
1013
1021
.
28.
Wang
,
N.
,
Chang
,
S. -H.
, and
Huang
,
H. -C.
, 2010, “
Stopping Criterion in Iterative Solution Methods for Reynolds Equations
,”
Tribol. Trans.
1040-2004,
53
, pp.
739
747
.
29.
Knabner
,
P.
, and
Angermann
,
L.
, 2003,
Numerical Methods for Elliptic and Parabolic Partial Differential Equations
,
Springer-Verlag
,
New York
.
30.
Strikwerda
,
J. C.
, 1989,
Finite Difference Schemes and Partial Differential Equations
,
Wadsworth & Brooks/Cole Advanced Books & Software
,
Pacific Grove, CA
.
31.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 2007,
Numerical Recipes: The Art of Scientific Computing
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.