A new thermohydrodynamic analysis model for bump air foil bearings with a detailed thermal model of bump foil structures and rotor is presented. In the developed model, temperatures of lubricating air film, top foil, bump foils, bearing sleeve, and rotor are calculated simultaneously through an iterative process. Reynolds equation and 3D energy equation were applied to the air film, and energy equations were applied to all the other structures around the bearing. Energy and momentum equations were applied to cooling channels to predict spatial temperature distribution along the cooling channels. The thermal growth of the rotor, foil structure, bearing sleeve, and centrifugal growth of the rotor are also considered. For the accuracy of the model, effective heat transfer resistance between the top foil and bearing sleeve was measured for various conditions and implemented into the thermal analysis around the cooling channels. The model was also bench marked with published experimental results for verifications. Using a developed model, parametric studies were performed with different bearing nominal clearances, applied loads, rotating speeds, and cooling conditions through channels.

1.
Agnew
,
G. D.
,
Bozzolo
,
M.
,
Moritz
,
R. R.
, and
Berenyi
,
S.
, 2005, “
The Design and Integration of the Rolls-Royce Fuel Cell Systems 1MW SOFC
,” ASME Paper No. GT2005-69122.
2.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
, 2008, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power Sources
0378-7753,
176
(
1
), pp.
229
239
.
3.
Tucker
,
D.
,
Lawson
,
R.
,
VanOsdol
,
J.
,
Kislear
,
J.
, and
Akinbobuyi
,
A.
, 2006, “
Examination of Ambient Pressure Effects on Hybrid Solid Oxide Fuel Cell Turbine System Operation using Hardware Simulation
,” ASME Paper No. GT2006-91291.
4.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillett
,
J. E.
, and
Lundberg
,
W. L.
, 2002, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
4
), pp.
845
849
.
5.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
(
2
), pp.
352
368
.
6.
Heshmat
,
H.
,
Walton
,
J. F.
, II
, and
Tomaszewski
,
M. J.
, 2005, “
Demonstration of a Turbojet Engine Using an Air Foil Bearing
,” ASME Paper No. GT2005-68404.
7.
Trivedi
,
H. K.
,
Klenke
,
C. J.
, and
Saba
,
C. S.
, 2004, “
Effect of Formulation and Temperature on Boundary Lubrication Performance of Polyphenylethers (5P4E)
,”
Tribol. Lett.
1023-8883,
17
(
1
), pp.
1
10
.
8.
Trivedi
,
H. K.
,
Saba
,
C. S.
, and
Givan
,
G. D.
, 2002, “
Thermal Stability of a Linear Perfluoropolyalkylether in a Rolling Contact Fatigue Tester
,”
Tribol. Lett.
1023-8883,
12
(
3
), pp.
171
182
.
9.
DellaCorte
,
C.
, and
Edmonds
,
B. J.
, 1995, “
Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800°C
,”
NASA
Technical Report No. TM-107056.
10.
DellaCorte
,
C.
,
Lukaszewicz
,
V.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Heshmat
,
H.
, 2000, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,”
NASA
Technical Report Nos. TM-2000–209187 and ARL-TR-2202.
11.
Stanford
,
M. K.
,
Yanke
,
A. M.
, and
DellaCorte
,
C.
, 2004, “
Thermal Effects on a Low Cr Modification of PS304 Solid Lubricant Coating
,”
NASA
Technical Report No. 2003-213111.
12.
Dellacorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbo-Machinery Applications
,”
STLE Tribol. Trans.
1040-2004,
43
(
4
), pp.
795
801
.
13.
Dykas
,
B.
, and
Howard
,
S. A.
, 2004, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
Tribol. Trans.
1040-2004,
47
(
4
), pp.
508
516
.
14.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
, 2002, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
45
(
4
), pp.
485
490
.
15.
Kim
,
D.
, and
Park
,
S.
, 2009, “
Hydrostatic Air Foil Bearings: Analytical and Experimental Investigations
,”
Tribol. Int.
0301-679X,
42
(
3
), pp.
413
425
.
16.
Kumar
,
M.
, and
Kim
,
D.
, 2008, “
Parametric Studies on Dynamic Performance of Hybrid Air Foil Bearings
,”
J. Eng. Gas Turbines Power
0742-4795,
130
(
6
), p.
062501
.
17.
Kim
,
D.
, 2007, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
354
364
.
18.
Song
,
J.
, and
Kim
,
D.
, 2007, “
Foil Gas Bearing With Compression Springs: Analyses and Experiments
,”
ASME J. Tribol.
0742-4787,
129
(
3
), pp.
628
639
.
19.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2007, “
Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models
,” ASME Paper No. GT2007-27249.
20.
Kim
,
T.
, and
San Andrés
,
L.
, 2005, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,” ASME Paper No. GT2005-68486.
21.
Carpino
,
M.
, and
Talmage
,
G.
, 2006, “
Prediction of Rotor Dynamic Coefficients in Gas Lubricated Foil Journal Bearings With Corrugated Sub-Foils
,”
STLE Tribol. Trans.
1040-2004,
49
(
3
), pp.
400
409
.
22.
Peng
,
J. P.
, and
Carpino
,
M.
, 1993, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
115
(
1
), pp.
20
27
.
23.
Agrawal
,
G. L.
, 1997, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
24.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
0742-4787,
116
(
2
), pp.
287
295
.
25.
Ku
,
C. P.
, and
Heshmat
,
H.
, 1994, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearing: Parametric Studies
,”
STLE Tribol. Trans.
1040-2004,
37
(
3
), pp.
455
462
.
26.
Heshmat
,
H.
,
Walton
,
J. F.
,
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Oil Free Turbocharger Demonstration Paves Way to Gas Turbine Engine Applications
,” ASME Paper No. 2000-GT-0620.
27.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
, 2001, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
0742-4787,
123
(
3
), pp.
566
571
.
28.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
, 2003, “
On the Frictional Damping Characterization of Compliant Bump Foils
,”
ASME J. Tribol.
0742-4787,
125
(
4
), pp.
804
813
.
29.
Walton
,
J. F.
, II
,
Heshmat
,
H.
, and
Tomaszewski
,
M. J.
, 2004, “
Testing of a Small Turbocharger/Turbojet Sized Simulator Rotor Supported on Foil Bearing
,” ASME Paper No. GT2004-53647.
30.
Mohawk Innovative Technology
, 2005, “
Low-Friction, Wear-Resistant Korolon™ C36 Coatings for High-Temperature, High-Speed, Air Foil Bearings
,” Mohawk Innovative Technology Internal Newsletter, 23.
31.
Radil
,
K.
, and
Zeszotek
,
M.
, 2004, “
An Experimental Investigation into the Temperature Profile of a Compliant Foil Air Bearing
,”
Tribol. Trans.
1040-2004,
47
(
4
), pp.
470
479
.
32.
Kim
,
D.
, and
Kumar
,
M.
, 2009, “
Load Capacity Measurements of Hydrostatic Bump Foil Bearing
,” ASME Paper No. GT2009-T59286.
33.
Radil
,
K.
,
DellaCorte
,
C.
, and
Zeszotek
,
M.
, 2007, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
Tribol. Trans.
1040-2004,
50
(
3
), pp.
319
327
.
34.
Peng
,
Z. C.
, and
Khonsari
,
M.
, 2006, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
534
541
.
35.
Feng
,
K.
, and
Kaneko
,
S.
, 2008, “
A Study of Thermohydrodynamic Features of Multiwound Foil Bearing Using Lobatto Point Quadrature
,” ASME Paper No. GT2008-50110.
36.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2009, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,” ASME Paper No. GT2009-59919.
37.
Sim
,
K.
, and
Kim
,
D.
, 2008, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
3
), p.
032502
.
38.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Introduction to Heat Transfer
,
Wiley
,
New York
, pp.
114
118
.
39.
Mills
,
A. F.
, 1999,
Heat Transfer
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
362
365
.
40.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
, pp.
80
83
.
41.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
42.
Sim
,
K.
, 2007, “
Rotordynamic and Thermal Analyses of Compliant Flexure Pivot Tilting Pad Gas Bearings
,” Ph.D. thesis, Texas A&M University, TX.
43.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Introduction to Heat Transfer
,
Wiley
,
New York
, pp.
388
410
.
You do not currently have access to this content.