In the present investigation, a tip test based on upsetting and backward extrusion was utilized to characterize the effect of surface roughness of the billet and forming tools, and the type of lubricants on friction. For the test, cylindrical specimens made of aluminum alloys of 6061-O and 2024-O, and single punch and two die sets with different surface topologies, were used with four lubricants such as VG32, VG100, corn oil, and grease. The load levels and tip distances were measured for both materials, and compared with each other to determine shear friction factors at the punch and counter punch interfaces separately, depending on the variation in surface topologies and lubrications using finite element simulations. As a result, a linear relationship among the dimensionless load, tip distance, and shear friction factors at the punch and counter punch interfaces was derived for the experimental conditions investigated. The slope change of this linear relationship from negative to positive clearly depends on the variation in surface conditions at the billet/punch and billet/counter punch interfaces. Also, it was demonstrated that the dimensionless tip distance for the frictionless case can be extrapolated from the experimental data. This value can be used for characterizing the relative effect on friction due to surface conditions at the punch and counter punch, and lubrication quality of the lubricant for the given processing conditions.

1.
Schey
,
J. A.
, 1983,
Tribology in Metalworking: Friction, Lubrication and Wear
,
Metals Park, American Society for Metals
,
OH
.
2.
Lange
,
K.
, 1985,
Handbook of Metal forming
,
McGraw-Hill
,
New York
, Chap. 6.
3.
Buschhausen
,
A.
,
Weinmann
,
K.
,
Lee
,
J. Y.
, and
Altan
,
T.
, 1992, “
Evaluation of Lubrication and Friction in Cold Forging Using Double Backward-Extrusion Process
,”
J. Mater. Process. Technol.
0924-0136,
33
, pp.
95
108
.
4.
Im
,
Y. T.
,
Vardan
,
O.
,
Shen
,
G.
, and
Altan
,
T.
, 1988, “
Investigation of Non-Isothermal Forging Using Ring and Spike Tests
,”
CIRP Ann.
0007-8506,
37
(
1
), pp.
225
230
.
5.
Barcellona
,
A.
, and
Cannizzaro
,
L.
, 1996, “
Validation of Friction Studies by Double Cup Extrusion Tests in Cold Forming
,”
CIRP Ann.
0007-8506,
45
(
1
), pp.
211
214
.
6.
Burgdorf
,
M.
, 1967, “
Über die Ermittlung des. Reibbeiwertes für Verfahren der Massiv- umformung Durch das Ringstauchen
,”
Industrie-Anzeiger
,
89
, pp.
799
804
.
7.
Male
,
A. T.
,
De Pierre
,
V.
, and
Saul
,
G.
, 1973, “
The Relative Validity of the Concepts of Coefficient of Friction and Interface Friction Shear Factor for Use in Metal Deformation Studies
,”
Trans. ASLE Tribol. Trans.
,
16
(
3
), pp.
177
184
.
8.
Frederiksen
,
N.
, and
Wanheim
,
T.
, 1985, “
Development of Friction Tests for Lubrication in Model-Material Experiments
,”
J. Mech. Work. Technol.
0378-3804,
12
, pp.
261
268
.
9.
Lee
,
B. H.
,
Keum
,
Y. T.
, and
Wagoner
,
R. H.
, 2002, “
Modeling of the Friction Caused by Lubrication and Surface Roughness in Sheet Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
130–131
, pp.
60
63
.
10.
Mumin
,
S.
,
Cem
,
S.
,
Cetinarslan
,
H.
, and
Erol
,
A.
, 2007, “
Effect of Surface Roughness on Friction Coefficients During Upsetting Processes for Different Materials
,”
Mater. Des.
0264-1275,
28
, pp.
633
640
.
11.
Mahrenholtz
,
O.
,
Bontcheva
,
N.
, and
Iankov
,
R.
, 2005, “
Influence of Surface Roughness on Friction During Metal Forming Processes
,”
J. Mater. Process. Technol.
0924-0136,
159
, pp.
9
16
.
12.
Mahrenholtz
,
O.
,
Bontcheva
,
N.
,
Iankov
,
R.
, and
Datcheva
,
M.
, 2000, “
Investigation of the Influence of Surface Roughness on Metal Forming Processes
,”
Mech. Res. Commun.
0093-6413,
27
(
4
), pp.
393
402
.
13.
Elleuch
,
R.
,
Elleuch
,
K.
,
Abdelounis
,
H. B.
, and
Zahouani
,
H.
, 2007, “
Surface Roughness Effect on Friction Behavior of Elastomeric Material
,”
Mater. Sci. Eng., A
0921-5093,
465
, pp.
8
12
.
14.
Im
,
Y. T.
,
Cheon
,
J. S.
, and
Kang
,
S. H.
, 2002, “
Determination of Friction Condition by Geometrical Measurement of Backward Extruded Aluminum Alloy Specimen
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
409
415
.
15.
Im
,
Y. T.
,
Kang
,
S. H.
, and
Cheon
,
J. S.
, 2003, “
Finite Element Investigation of Friction Condition in a Backward Extrusion of Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
378
383
.
16.
Kang
,
S. H.
,
Lee
,
J. H.
,
Cheon
,
J. S.
, and
Im
,
Y. T.
, 2004, “
The Effect of Strain Hardening on Frictional Behavior in Tip Test
,”
Int. J. Mech. Sci.
0020-7403,
46
, pp.
855
869
.
17.
Chauviere
,
P.
,
Jung
,
K. H.
,
Kim
,
D. K.
,
Lee
,
H. C.
,
Kang
,
S. H.
, and
Im
,
Y. T.
, 2008, “
Experimental Study of Miniaturized Tip Test
,”
J. Mech. Sci. Technol.
1738-494X,
22
, pp.
924
930
.
18.
Charalambides
,
M. N.
,
Goh
,
S. M.
,
Lim
,
S. L.
, and
Williams
,
J. G.
, 2001, “
The Analysis of the Frictional Effect on Stress-strain Data from Uniaxial Compression of Cheese
,”
J. Mater. Sci.
0022-2461,
36
, pp.
2313
2321
.
19.
Parteder
,
E.
, and
Bűnten
,
R.
, 1998, “
Determination of Flow Curves by Means of a Compression Test Under Sticking Friction Conditions Using an Iterative Finite-Element Procedure
,”
J. Mater. Process. Technol.
0924-0136,
74
, pp.
227
233
.
20.
Im
,
Y. T.
,
Kang
,
S. H.
, and
Cheon
,
J. S.
, 2006, “
A Novel Technique of Friction and Material Property Measurement by Tip Test in Cold Forging
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
, pp.
81
90
.
21.
Kim
,
S. Y.
, and
Im
,
Y. T.
, 2002, “
Three-Dimensional Finite Element Analysis of Non-Isothermal Shape Rolling
,”
J. Mater. Process. Technol.
0924-0136,
127
, pp.
57
63
.
22.
Kwak
,
D. Y.
,
Cheon
,
J. S.
, and
Im
,
Y. T.
, 2002, “
Remeshing for Metal Forming Simulations—Part I: Two-Dimensional Quadrilateral Remeshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
11
), pp.
2463
2500
.
23.
Kwak
,
D. Y.
, and
Im
,
Y. T.
, 2002, “
Remeshing for Metal Forming Simulations—Part II: Three-Dimensional Hexahedral Mesh Generation
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
11
), pp.
2501
2528
.
You do not currently have access to this content.