A general contact stiffness model is proposed in this paper to study the contacts between rough surfaces of machined plane joints. The proposed model uses fractal geometry for surface topography description, elastic-plastic deformation of contacting asperities, and size-dependent contact stiffness of microcontacts, where the contact stiffness is derived from Hertz contact theory. Three cast iron specimens are produced from different machining methods (milling, grinding, and scraping), and their rough surface profiles are extracted. The structure function method was used to calculate each profile’s fractal dimension and scale coefficient. Both theoretical analysis and experimental results of contact stiffness are obtained for these specimens under different contact loads. The comparison between the theoretical contact stiffness and the experimental results at the interface indicates that the present fractal model for the contact stiffness is appropriate and the theoretical contact stiffness is consistent with the experimental data.

1.
Ren
,
Y.
, and
Beards
,
C. F.
, 1998, “
Identification of ‘Effective’ Linear Joints Using Coupling and Joint Identification Techniques
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
2
), pp.
331
338
.
2.
Fu
,
W. P.
,
Huang
,
Y. M.
, and
Zhang
,
X. L.
, 2000, “
Experimental Investigation of Dynamic Normal Characteristics of Machined Joint Surfaces
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
4
), pp.
393
398
.
3.
Yoshimura
,
M.
, 1979, “
Computer-Aided Design Improvement of Machine Tool Structure Incorporation Joint Dynamics Data
,”
CIRP Ann.
0007-8506,
28
(
1
), pp.
241
246
.
4.
Panagiotopoulos
,
P. D.
,
Panagouli
,
O. K.
, and
Mistakidis
,
E. S.
, 1994, “
Fractal Geometry in Structures. Numerical Methods for Convex Energy Problems
,”
Int. J. Solids Struct.
0020-7683,
31
(
16
), pp.
2211
2228
.
5.
Komvopoulos
,
K.
, 1988, “
Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface
,”
ASME J. Tribol.
0742-4787,
110
(
3
), pp.
477
485
.
6.
Willner
,
K.
, 2004, “
Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
28
33
.
7.
Streator
,
J. L.
, 2003, “
Dynamic Contact of a Rigid Sphere With an Elastic Half-Space: A Numerical Simulation
,”
ASME J. Tribol.
,
125
(
1
), pp.
25
32
.
8.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
295
, pp.
300
319
.
9.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
, pp.
313
327
.
10.
Ciavarella
,
M.
,
Murolo
,
G.
,
Demelio
,
G.
, and
Barber
,
J. R.
, 2004, “
Elastic Contact Stiffness and Contact Resistance for the Weierstrass Profile
,”
J. Mech. Phys. Solids
0022-5096,
52
(
6
), pp.
1247
1265
.
11.
Komvopoulos
,
K.
, and
Ye
,
N.
, 2001, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
0742-4787,
123
(
3
), pp.
632
640
.
12.
He
,
L.
, and
Zhu
,
J.
, 1997, “
The Fractal Character of Processed Metal Surfaces
,”
Wear
0043-1648,
208
(
1-2
), pp.
17
24
.
13.
Brown
,
C. A.
, and
Savary
,
G.
, 1991, “
Describing Ground Surface Texture Using Contact Profilometry and Fractal Analysis
,”
Wear
0043-1648,
141
, pp.
211
226
.
14.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
(
7
), pp.
3617
3624
.
15.
Borodich
,
F. M.
, and
Onishchenko
,
D. A.
, 1999, “
Similarity and Fractality in the Modelling of Roughness by a Multilevel Profile With Hierarchical Structure
,”
Int. J. Solids Struct.
0020-7683,
36
(
17
), pp.
2585
2612
.
16.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
(
1
), pp.
1
11
.
17.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1991, “
Fractal Network Model for Contact Conductance
,”
ASME J. Heat Transfer
0022-1481,
113
(
3
), pp.
516
525
.
18.
Kogut
,
L.
, and
Komvopoulosa
,
K.
, 2003, “
Electrical Contact Resistance Theory for Conductive Rough Surfaces
,”
J. Appl. Phys.
0021-8979,
94
(
5
), pp.
3153
3162
.
19.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
216
220
.
20.
Zhu
,
H.
,
Ge
,
S.
,
Huang
,
X.
,
Zhang
,
D.
, and
Liu
,
J.
, 2003, “
Experimental Study on the Characterization of Worn Surface Topography With Characteristic Roughness Parameter
,”
Wear
0043-1648,
255
(
1–6
), pp.
309
314
.
You do not currently have access to this content.