Inertial effects due to the centripetal forces may become dominant at high rotational speeds in hydrostatic thrust bearings. Although this influence has been recognized in literature, bearings are commonly optimized with respect to the minimum friction, and the dissipation function has not been taken into account in the optimization procedures. It is observed that the secondary flow caused by the inertia term gives a large contribution to the dissipation for applications with a high rotational speed. In this study, the minimum dissipation for annular and circular recess thrust bearings operating at a certain rotational speed is determined by finding the optimum film thickness in the recess. An example is given for annular recess thrust bearings.

1.
Rowe
,
W. B.
, 1983,
Hydrostatic and Hybrid Bearing Design
,
Butterworths
,
London
.
2.
Bassani
,
R.
, and
Piccigallo
,
B.
, 1992,
Hydrostatic Lubrication
,
Elsevier
,
Amsterdam
.
3.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
, 2004,
Fundamentals of Fluid Film Lubrication
,
2nd ed.
,
Dekker
,
New York
.
4.
Pinkus
,
O.
, and
Sternlicht
,
B.
, 1961,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
5.
Gross
,
W. A.
,
Matsch
,
L. A.
,
Castelli
,
V.
,
Eshel
,
A.
,
Vohr
,
J. H.
, and
Wildmann
,
M.
, 1980,
Fluid Film Lubrication
,
Wiley
,
New York
.
6.
Szeri
,
A. Z.
, 1998,
Fluid Film Lubrication: Theory and Design
,
Cambridge University Press
,
Cambridge
.
7.
Osterle
,
J. F.
, and
Hughes
,
W. F.
, 1958, “
The Effect of Lubricant Inertia in Hydrostatic Thrust-Bearing Lubrication
,”
Wear
0043-1648,
1
, pp.
465
471
.
8.
Dowson
,
D.
, 1961, “
Inertia Effects in Hydrostatic Thrust Bearings
,”
ASME J. Basic Eng.
0021-9223,
83
, pp.
227
234
.
9.
Chow
,
C. -Y.
, 1975, “
A Non-Central Feeding Hydrostatic Thrust Bearing
,”
J. Fluid Mech.
0022-1120,
72
, pp.
113
120
.
10.
Jackson
,
J. D.
, and
Symmons
,
G. R.
, 1965, “
The Pressure Distribution in a Hydrostatic Bearing
,”
Int. J. Mech. Sci.
0020-7403,
7
(
4
), pp.
239
242
.
11.
Symmons
,
G. R.
, and
Klemz
,
F. B.
, 1976, “
Effect of Radial and Rotational Lubricant Inertia on the Pressure Distribution in Externally Pressurised Thrust Bearings
,”
Appl. Sci. Res.
0003-6994,
32
(
1
), pp.
31
44
.
12.
Makay
,
E.
, and
Trumpler
,
P. R.
, 1971, “
Inertia Effects in Fully Developed Axisymmetric Laminar Flow
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
408
414
.
13.
Szeri
,
A. Z.
, and
Adams
,
M. L.
, 1978, “
Laminar Throughflow Between Closely Spaced Rotating Disks
,”
J. Fluid Mech.
0022-1120,
86
(
1
), pp.
1
14
.
14.
Brunetière
,
N.
, and
Tournerie
,
B.
, 2006, “
The Effect of Inertia on Radial Flows-Application to Hydrostatic Seals
,”
ASME J. Tribol.
0742-4787,
128
, pp.
566
574
.
15.
Pinkus
,
O.
, and
Lund
,
J. W.
, 1981, “
Centrifugal Effects in Thrust Bearings and Seals Under Laminar Conditions
,”
ASME J. Lubr. Technol.
0022-2305,
103
, pp.
126
136
.
16.
San Andrés
,
L.
, 2000, “
Bulk-Flow Analysis of Hybrid Thrust Bearings for Process Fluid Applications
,”
ASME J. Tribol.
0742-4787,
122
, pp.
170
180
.
17.
Johnson
,
R. E.
, and
Manring
,
N. D.
, 2005, “
Translating Circular Thrust Bearings
,”
J. Fluid Mech.
0022-1120,
530
, pp.
197
212
.
18.
Pinkus
,
O.
, 1990,
Thermal Aspects of Fluid Film Tribology
,
ASME
,
New York
.
19.
Hughes
,
W. F.
, and
Osterle
,
J. F.
, 1957, “
Heat-Transfer Effects in Hydrostatic Thrust-Bearing Lubrication
,”
Trans ASME
,
79
, pp.
1225
1228
.
20.
Hughes
,
W. F.
and
Osterle
,
J. F.
, 1955, “
Temperature Effects in Hydrostatic Thrust Bearing Lubrication
,”
ASME
Paper No. 55-LUB-11.
21.
Kapur
,
V. K.
, and
Verma
,
K.
, 1979, “
The Simultaneous Effects of Inertia and Temperature on the Performance of a Hydrostatic Thrust Bearing
,”
Wear
0043-1648,
54
(
1
), pp.
113
122
.
22.
Ting
,
L. L.
, and
Mayer
,
J. E.
, Jr.
, 1971, “
The Effects of Temperature and Inertia on Hydrostatic Thrust Bearing Performance
,”
ASME J. Lubr. Technol.
0022-2305,
93
(
2
), pp.
307
312
.
23.
Deb
,
K.
, and
Goyal
,
M.
, 1997, “
Optimizing Engineering Designs Using a Combined Genetic Search
,”
Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97)
,
T.
Bäck
, ed.,
Morgan Kaufmann
,
San Francisco, CA
, pp.
521
528
.
24.
Montusiewicz
,
J.
, and
Osyczka
,
A.
, 1997, “
Computer Aided Optimum Design of Machine Tool Spindle Systems With Hydrostatic Bearings
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
211
, pp.
43
51
.
25.
Kazama
,
T.
, 2000, “
Optimum Design of Hydrostatic Spherical Bearings in Fluid Film Lubrication
,”
ASME J. Tribol.
0742-4787,
122
, pp.
866
869
.
26.
Solmaz
,
E.
,
Babalik
,
F. C.
, and
Öztürk
,
F.
, 2003, “
Optimization of Circular Hydrostatic Axial Journal Bearings Using a Multicriteria Approach
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
, pp.
235
241
.
27.
Sharma
,
S. C.
,
Jain
,
S. C.
, and
Bharuka
,
D.
, 2002, “
Influence of Recess Shape on the Performance of a Capillary Compensated Circular Thrust Pad Hydrostatic Bearing
,”
Tribol. Int.
0301-679X,
35
, pp.
347
356
.
28.
Rayleigh
,
L.
, 1918, “
Notes on the Theory of Lubrication
,”
Philos. Mag.
1478-6435,
35
, pp.
1
12
.
You do not currently have access to this content.