The strong stiction of adjacent surfaces with meniscus is a major design concern in the devices with a microsized interface. The present research concerns the elastic adhesion of rough fractal surfaces in the presence of a thin liquid film. A rough fractal surface is characterized with a two-variable Weierstrass–Mandelbrot fractal function. The microcontact model of the single asperity is established in terms of the fractal parameters. The adhesion model from meniscus is developed with the Dugdale approximation of the Laplace pressure to consider the adhesive interaction within/outside the contact area. Then the Maugis–Dugdale model and its extension are used to solve the elastic adhesive interaction for the two approaching fractal surfaces by incorporating the fractal surface model. Simulations of the external force versus the interface stiffness, surface roughness, and relative humidity are performed, respectively. The simulation results show that the interface stiffness, surface topography, and relative humidity can heavily influence the interface adhesion of rough surfaces with meniscus.

1.
Israelachvili
,
J. N.
, 1985,
Intermolecular and Surface Forces
,
Academic
,
San Diego, CA
.
2.
Bhushan
,
B.
, 1996,
Tribology and Mechanics of Magnetic Storage Devices
,
2nd ed.
,
Springer
,
New York
.
3.
Bowden
,
F. P.
, and
Tabor
,
D.
, 1950,
The Friction and Lubrication of Solids
,
Clarendon
,
Oxford
.
4.
Gao
,
T. C.
,
Tian
,
X.
, and
Bhushan
,
B.
, 1995, “
A Meniscus Model for Optimization of Texturing and Liquid Lubrication of Magnetic Thin Film Rigid Disks
,”
Tribol. Trans.
1040-2004,
38
, pp.
201
212
.
5.
Xue
,
X.
, and
Polycarpou
,
A. A.
, 2007, “
An Improved Meniscus Surface Model for Contacting Rough Surfaces
,”
J. Colloid Interface Sci.
0021-9797,
311
, pp.
203
211
.
6.
Maugis
,
D.
, 1992, “
Adhesion of Spheres: The JKR–DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
0021-9797,
150
, pp.
243
269
.
7.
Shi
,
X.
, and
Polycarpou
,
A. A.
, 2005, “
An Adhesive Transition From Noncontacting to Contacting Elastic Spheres: Extension of the Maugis–Dugdale Model
,”
J. Colloid Interface Sci.
0021-9797,
290
, pp.
514
525
.
8.
Nosonovsky
,
M.
, 2007, “
Model for Solid-Liquid and Solid-Solid Friction of Rough Surfaces With Adhesion Hysteresis
,”
Chem. Phys.
0301-0104,
126
(
22
), p.
224701
.
9.
Tian
,
X. F.
, and
Bhushan
,
B.
, 1996, “
The Micro-Meniscus Effect of a Thin Liquid Film on the Static Friction of Rough Surface Contact
,”
J. Physics
,
29
, pp.
163
178
.
10.
Bhushan
,
B.
,
Kotwal
,
C. A.
, and
Chilamakuri
,
S. K.
, 1998, “
Kinetic Meniscus Model for Prediction of Rest Stiction
,”
ASME J. Tribol.
0742-4787,
120
, pp.
42
53
.
11.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
12.
Komvopoulos
,
K.
, 2003, “
Adhesion and Friction Forces in Microelectromechanical Systems: Mechanisms, Measurement, Surface Modification Techniques, and Adhesion Theory
,”
J. Adhes. Sci. Technol.
0169-4243,
17
(
4
), pp.
477
517
.
13.
Ling
,
F. F.
, 1958, “
On the Asperity Distributions of Metallic Surfaces
,”
J. Appl. Phys.
0021-8979,
29
, pp.
1168
1174
.
14.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
, pp.
313
327
.
15.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
0742-4787,
112
, pp.
205
216
.
16.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
, pp.
3617
3624
.
17.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
18.
Admoson
,
A. W.
, 1990,
Physical Chemistry of Surfaces
,
5th ed.
,
Wiley
,
New York
.
19.
Orr
,
F. M.
, and
Scriven
,
L. E.
, 1975, “
Pendular Rings Between Solids: Meniscus Properties and Capillary Force
,”
J. Fluid Mech.
0022-1120,
67
, pp.
723
742
.
20.
Peng
,
Y. F.
, and
Li
,
G. X.
, 2007, “
An Elastic Adhesion Model for Contacting Cylinder and Perfectly Wetted Plane in the Presence of Meniscus
,”
ASME J. Tribol.
0742-4787,
129
, pp.
231
234
.
21.
Morrow
,
C. A.
, 2003, “
Adhesive Rough Surface Contact
,” Ph.D. thesis, University of Pittsburgh, Pittsburgh.
22.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
, 1997, “
An Adhesion Map for Contact of Elastic Spheres
,”
J. Colloid Interface Sci.
0021-9797,
192
, pp.
326
333
.
You do not currently have access to this content.