Elastic-plastic contact of a smooth sphere and a half-space with a real machined surface is simulated using an integration-based multilevel contact model. The total surface deflection is composed of bulk and asperity deformations. They are calculated at the global and the asperity level, respectively, which are connected through the asperity-supporting load. With this new model, the accurate contact area and contact pressure under a given load are quickly predicted using a relatively coarse grid system. The calculated load-area curve shows good agreement with the experimental data. Finally, the effects of the surface topography, including roughness and the asperity radius, upon the real contact area are analyzed.

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
295
, pp.
300
319
.
2.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
, 1975, “
Elastic Contact of a Rough Surface
,”
Wear
0043-1648,
35
(
1
), pp.
87
111
.
3.
Archard
,
J. F.
,
Hunt
,
R. T.
, and
Onions
,
R. A.
, 1975, “
Stylus Profilometry and the Analysis of the Contact of Rough Surfaces
,”
The Mechanics of the Contact Between Deformable Bodies
,
Delft University Press
,
The Netherlands
, pp.
282
303
.
4.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
. 0742-4787
5.
Hendriks
,
C. P.
, and
Visscher
,
M.
, 1995, “
Accurate Real Area of Contact Measurements on Polyurethane
,”
ASME J. Tribol.
0742-4787,
117
(
4
), pp.
607
611
.
6.
Komvopoulos
,
K.
, and
Choi
,
D. -H.
, 1992, “
Elastic Finite Element Analysis of Multi-Asperity Contacts
,”
ASME J. Tribol.
0742-4787,
114
, pp.
823
831
.
7.
Dumas
,
G.
, and
Baronet
,
C. N.
, 1971, “
Elastoplastic Indentation of a Half-Space by an Infinitely Long Rigid Circular Cylinder
,”
Int. J. Mech. Sci.
0020-7403,
13
, pp.
519
530
.
8.
Hardy
,
C.
,
Baronet
,
C. N.
, and
Tordion
,
G. V.
, 1971, “
The Elasto-Plastic Indentation of a Half-Space by a Rigid Sphere
,”
Int. J. Numer. Methods Eng.
0029-5981,
3
, pp.
451
462
.
9.
Follansbee
,
P. S.
, and
Sinclair
,
G. B.
, 1984, “
Quasi-Static Normal Indentation of an Elasto-Plastic Half-Space by a Rigid Sphere
,”
Int. J. Solids Struct.
0020-7683,
20
(
1
), pp.
81
91
.
10.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
, 1993, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
829
841
.
11.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
(
5
), pp.
657
662
.
12.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
46
(
3
), pp.
383
390
.
13.
Liu
,
G.
,
Zhu
,
J.
,
Yu
,
L.
, and
Wang
,
Q. J.
, 2001, “
Elasto-Plastic Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
44
(
3
), pp.
437
443
.
14.
Liu
,
G.
,
Wang
,
Q. J.
, and
Lin
,
C.
, 1999, “
A Survey of Current Models for Simulating the Contact Between Rough Surfaces
,”
Tribol. Trans.
1040-2004,
42
(
3
), pp.
581
591
.
15.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
16.
Bailey
,
D. M.
, and
Sayles
,
R. S.
, 1991, “
Effect of Roughness and Sliding Friction on Contact Stresses
,”
ASME J. Tribol.
0742-4787,
113
, pp.
729
738
.
17.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
(
2
), pp.
206
219
.
18.
Liu
,
S. B.
,
Wang
,
Q. J.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
(
1–2
), pp.
101
111
.
19.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
(
4
), pp.
653
667
.
20.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
0742-4787,
127
(
3
), pp.
494
502
.
21.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Rough Contact Incorporating Plastic Deformation
,”
Proceedings of the World Tribology Congress III (CD)
, Washington, DC.
22.
Abbott
,
E. J.
, and
Firestone
,
F. A.
, 1933, “
Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
55
, pp.
569
572
. 0025-6501
23.
Hill
,
R.
,
Storåkers
,
B.
, and
Zdunek
,
A. B.
, 1989, “
A Theoretical Study of the Brinell Hardness Test
,”
Proc. R. Soc. London, Ser. A
,
423
, pp.
301
330
. 0080-4630
24.
Biwa
,
S.
, and
Storåkers
,
B.
, 1995, “
An Analysis of Fully Plastic Brinell Indentation
,”
J. Mech. Phys. Solids
0022-5096,
43
, pp.
1303
1333
.
25.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
, 1999, “
Spherical Indentation of Elastic-Plastic Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
455
, pp.
2707
2728
.
26.
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2004, “
Analysis of the Spherical Indentation Cycle for Elastic-Perfectly Plastic Solids
,”
J. Mater. Res.
0884-2914,
19
, pp.
3641
3653
.
27.
Kucharski
,
S.
,
Klimczak
,
T.
,
Polijaniuk
,
A.
, and
Kaczmarek
,
J.
, 1994, “
Finite-Elements Model for the Contact of Rough Surfaces
,”
Wear
0043-1648,
177
, pp.
1
13
.
You do not currently have access to this content.