Elastic-plastic contact of a smooth sphere and a half-space with a real machined surface is simulated using an integration-based multilevel contact model. The total surface deflection is composed of bulk and asperity deformations. They are calculated at the global and the asperity level, respectively, which are connected through the asperity-supporting load. With this new model, the accurate contact area and contact pressure under a given load are quickly predicted using a relatively coarse grid system. The calculated load-area curve shows good agreement with the experimental data. Finally, the effects of the surface topography, including roughness and the asperity radius, upon the real contact area are analyzed.
Issue Section:
Contact Mechanics
1.
Greenwood
, J. A.
, and Williamson
, J. B. P.
, 1966, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. London, Ser. A
0950-1207, 295
, pp. 300
–319
.2.
Bush
, A. W.
, Gibson
, R. D.
, and Thomas
, T. R.
, 1975, “Elastic Contact of a Rough Surface
,” Wear
0043-1648, 35
(1
), pp. 87
–111
.3.
Archard
, J. F.
, Hunt
, R. T.
, and Onions
, R. A.
, 1975, “Stylus Profilometry and the Analysis of the Contact of Rough Surfaces
,” The Mechanics of the Contact Between Deformable Bodies
, Delft University Press
, The Netherlands
, pp. 282
–303
.4.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces
,” ASME J. Tribol.
, 109
, pp. 257
–263
. 0742-47875.
Hendriks
, C. P.
, and Visscher
, M.
, 1995, “Accurate Real Area of Contact Measurements on Polyurethane
,” ASME J. Tribol.
0742-4787, 117
(4
), pp. 607
–611
.6.
Komvopoulos
, K.
, and Choi
, D. -H.
, 1992, “Elastic Finite Element Analysis of Multi-Asperity Contacts
,” ASME J. Tribol.
0742-4787, 114
, pp. 823
–831
.7.
Dumas
, G.
, and Baronet
, C. N.
, 1971, “Elastoplastic Indentation of a Half-Space by an Infinitely Long Rigid Circular Cylinder
,” Int. J. Mech. Sci.
0020-7403, 13
, pp. 519
–530
.8.
Hardy
, C.
, Baronet
, C. N.
, and Tordion
, G. V.
, 1971, “The Elasto-Plastic Indentation of a Half-Space by a Rigid Sphere
,” Int. J. Numer. Methods Eng.
0029-5981, 3
, pp. 451
–462
.9.
Follansbee
, P. S.
, and Sinclair
, G. B.
, 1984, “Quasi-Static Normal Indentation of an Elasto-Plastic Half-Space by a Rigid Sphere
,” Int. J. Solids Struct.
0020-7683, 20
(1
), pp. 81
–91
.10.
Kral
, E. R.
, Komvopoulos
, K.
, and Bogy
, D. B.
, 1993, “Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,” ASME J. Appl. Mech.
0021-8936, 60
, pp. 829
–841
.11.
Kogut
, L.
, and Etsion
, I.
, 2002, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,” ASME J. Appl. Mech.
0021-8936, 69
(5
), pp. 657
–662
.12.
Kogut
, L.
, and Etsion
, I.
, 2003, “A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,” Tribol. Trans.
1040-2004, 46
(3
), pp. 383
–390
.13.
Liu
, G.
, Zhu
, J.
, Yu
, L.
, and Wang
, Q. J.
, 2001, “Elasto-Plastic Contact of Rough Surfaces
,” Tribol. Trans.
1040-2004, 44
(3
), pp. 437
–443
.14.
Liu
, G.
, Wang
, Q. J.
, and Lin
, C.
, 1999, “A Survey of Current Models for Simulating the Contact Between Rough Surfaces
,” Tribol. Trans.
1040-2004, 42
(3
), pp. 581
–591
.15.
Johnson
, K. L.
, 1985, Contact Mechanics
, Cambridge University Press
, Cambridge
.16.
Bailey
, D. M.
, and Sayles
, R. S.
, 1991, “Effect of Roughness and Sliding Friction on Contact Stresses
,” ASME J. Tribol.
0742-4787, 113
, pp. 729
–738
.17.
Polonsky
, I. A.
, and Keer
, L. M.
, 1999, “A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,” Wear
0043-1648, 231
(2
), pp. 206
–219
.18.
Liu
, S. B.
, Wang
, Q. J.
, and Liu
, G.
, 2000, “A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,” Wear
0043-1648, 243
(1–2
), pp. 101
–111
.19.
Jacq
, C.
, Nélias
, D.
, Lormand
, G.
, and Girodin
, D.
, 2002, “Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,” ASME J. Tribol.
0742-4787, 124
(4
), pp. 653
–667
.20.
Wang
, F.
, and Keer
, L. M.
, 2005, “Numerical Simulation for Elastic-Plastic Contact With Hardening Behavior
,” ASME J. Tribol.
0742-4787, 127
(3
), pp. 494
–502
.21.
Wang
, F.
, and Keer
, L. M.
, 2005, “Numerical Simulation for Rough Contact Incorporating Plastic Deformation
,” Proceedings of the World Tribology Congress III (CD)
, Washington, DC.22.
Abbott
, E. J.
, and Firestone
, F. A.
, 1933, “Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison
,” Mech. Eng. (Am. Soc. Mech. Eng.)
, 55
, pp. 569
–572
. 0025-650123.
Hill
, R.
, Storåkers
, B.
, and Zdunek
, A. B.
, 1989, “A Theoretical Study of the Brinell Hardness Test
,” Proc. R. Soc. London, Ser. A
, 423
, pp. 301
–330
. 0080-463024.
Biwa
, S.
, and Storåkers
, B.
, 1995, “An Analysis of Fully Plastic Brinell Indentation
,” J. Mech. Phys. Solids
0022-5096, 43
, pp. 1303
–1333
.25.
Mesarovic
, S. D.
, and Fleck
, N. A.
, 1999, “Spherical Indentation of Elastic-Plastic Solids
,” Proc. R. Soc. London, Ser. A
0950-1207, 455
, pp. 2707
–2728
.26.
Kogut
, L.
, and Komvopoulos
, K.
, 2004, “Analysis of the Spherical Indentation Cycle for Elastic-Perfectly Plastic Solids
,” J. Mater. Res.
0884-2914, 19
, pp. 3641
–3653
.27.
Kucharski
, S.
, Klimczak
, T.
, Polijaniuk
, A.
, and Kaczmarek
, J.
, 1994, “Finite-Elements Model for the Contact of Rough Surfaces
,” Wear
0043-1648, 177
, pp. 1
–13
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.