A set of finite element simulations was performed to analyze the creep behavior of an elastic–perfectly plastic hemisphere in contact with a rigid flat. This study focuses on the time-dependent stress relaxation of a fully plastic asperity. Assuming a Garofalo (hyperbolic sine) type material creep law, the asperity shows two distinct phases of relaxation. In the first phase, the asperity creeps with an accelerated creep rate and shows a contact area increase similar to that of a cylindrical geometry. In the second phase, no contact area change can be measured and the asperity creeps with a slower rate. Empirical evolution laws for the asperity creep behavior are presented, analyzing the influence of both material and geometrical parameters. The results are interpreted in terms of transient friction.

1.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
2.
Lin
,
L. P.
, and
Lin
,
J. F.
, 2005, “
An Elastoplastic Microasperity Contact Model for Metallic Materials
,”
ASME J. Tribol.
0742-4787,
127
, pp.
666
672
.
3.
Etsion
,
I.
,
Kligermann
,
Y.
, and
Kadin
,
Y.
, 2005, “
Unloading of an Elastic-Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
3716
3729
.
4.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
0742-4787,
127
, pp.
343
354
.
5.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
295
(
1442
), pp.
300
319
.
6.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
. 0742-4787
7.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
57
63
. 0742-4787
8.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
, pp.
86
93
.
9.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2006, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
0043-1648,
261
, pp.
1337
1347
.
10.
Chang
,
L.
, and
Zhang
,
H.
, 2007, “
A Mathematical Model for Frictional Elastic-Plastic Sphere-on-Flat Contacts at Sliding Incipient
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
100
106
.
11.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2007, “
A Model for Junction Growth of a Spherical Contact Under Full Stick Condition
,”
ASME J. Tribol.
0742-4787,
129
(
4
), pp.
783
790
.
12.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2008, “
Loading-Unloading of an Elastic-Plastic Adhesive Spherical Microcontact
,”
J. Colloid Interface Sci.
0021-9797,
321
, pp.
242
250
.
13.
Jackson
,
R. L.
,
Chusoipin
,
I.
, and
Green
,
I.
, 2005, “
A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts
,”
ASME J. Tribol.
0742-4787,
127
, pp.
484
493
.
14.
Berthoud
,
P.
,
Baumberger
,
T.
,
G’Sell
,
C.
, and
Hiver
,
J. -M.
, 1999, “
Physical Analysis of the State-and Rate-Dependent Friction Law: I. Static Friction
,”
Phys. Rev. B
0163-1829,
59
(
22
), pp.
14313
14327
.
15.
Baumberger
,
T.
,
Berthoud
,
P.
, and
Caroli
,
C.
, 1999, “
Physical Analysis of the State-and Rate-Dependent Friction Law: II. Dynamic Friction
,”
Phys. Rev. B
0163-1829,
60
(
6
), pp.
3928
3939
.
16.
Brechet
,
Y.
, and
Estrin
,
Y.
, 1994, “
The Effect of Strain Rate Sensitivity on Dynamic Friction of Metals
,”
Scr. Metall. Mater.
0956-716X,
30
(
11
), pp.
1449
1454
.
17.
Ruina
,
A. L.
, 1983, “
Slip Instability and State Variable Friction Laws
,”
J. Geophys. Res.
0148-0227,
88
(
B12
), pp.
10359
10370
.
18.
Rice
,
J. R.
, and
Ruina
,
A. L.
, 1983, “
Stability of Steady Frictional Slipping
,”
ASME J. Appl. Mech.
,
50
, pp.
343
349
. 0021-8936
19.
Rabinowicz
,
E.
, 1965,
Friction and Wear of Materials
,
Wiley
,
New York
.
20.
Persson
,
B. N. J.
, 2000,
Sliding Friction—Physical Principles and Applications
,
2nd ed.
,
Springer
,
New York
.
21.
Mulhearn
,
T. O.
, and
Tabor
,
D.
, 1960, “
Creep and Hardness of Metals: A Physical Study
,”
J. Inst. Met.
,
89
, pp.
7
12
. 0020-2975
22.
Bower
,
A. F.
,
Fleck
,
N. A.
,
Needleman
,
A.
, and
Ogbonna
,
N.
, 1993, “
Indentation of a Power Law Creeping Solid
,”
Proc. R. Soc. London, Ser. A
0950-1207,
441
, pp.
97
124
.
23.
Ogbonna
,
N.
,
Fleck
,
N. A.
, and
Cocks
,
C. F.
, 1995, “
Transient Creep Analysis of Ball Indentation
,”
Int. J. Mech. Sci.
0020-7403,
37
(
11
), pp.
1179
1202
.
24.
Ossa
,
E. A.
,
Deshpande
,
V. S.
, and
Cebon
,
D.
, 2005, “
Spherical Indentation Behaviour of Bitumen
,”
Acta Mater.
1359-6454,
53
, pp.
3103
3113
.
25.
Kumar
,
M. V. R.
, and
Narasimhan
,
R.
, 2004, “
Analysis of Spherical Indentation of Linear Viscoelastic Materials
,”
Curr. Sci.
,
87
(
8
), pp.
1088
1095
. 0011-3891
26.
Brot
,
C. C.
,
Etsion
,
I.
, and
Kligerman
,
Y.
, 2008, “
A Contact Model for a Creeping Sphere and a Rigid Flat
,”
Wear
0043-1648,
265
, pp.
598
605
.
27.
Kucharski
,
S.
,
Klimczak
,
T.
,
Polijaniuk
,
A.
, and
Kaczmarek
,
J.
, 1994, “
Finite-Elements Model for the Contact of Rough Surfaces
,”
Wear
0043-1648,
177
, pp.
1
13
.
28.
Persson
,
B. N. J.
, 2000, “
Theory of Time-Dependent Plastic Deformation in Disordered Solids
,”
Phys. Rev. B
0163-1829,
61
(
9
), pp.
5949
5966
.
29.
Garofalo
,
F.
, 1965,
Fundamentals of Creep and Creep-Rupture in Metals
,
Macmillan Series in Materials Science
,
McMillan
,
New York
.
30.
Frost
,
H. J.
, and
Ashby
,
M. F.
, 1982,
Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics
,
Pergamon
,
New York
.
31.
Dieterich
,
J. H.
, and
Kilgore
,
B.
, 1994, “
Direct Observation of Frictional Contacts: New Insights for State-Dependent Properties
,”
PAGEOPH
0033-4553,
143
(
1–3
), pp.
283
302
.
32.
Bowden
,
F. P.
, and
Tabor
,
D.
, 1954,
The Friction and Lubrication of Solids
,
Clarendon
,
Oxford
.
33.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
34.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Clarendon
,
Oxford
.
35.
Ashby
,
M.
, and
Jones
,
D. R. H.
, 2005,
Engineering Materials 1
,
3rd ed.
,
Butterworth-Heinemann
,
Oxford
.
36.
ANSYS Inc.
, 2007, ANSYS Theory Manual, Release 11, ANSYS USA.
You do not currently have access to this content.