Chemical mechanical polishing (CMP) is a manufacturing process that is commonly used to planarize integrated circuits and other small-scale devices during fabrication. Although a number of models have been formulated, which focus on specific aspects of the CMP process, these models typically do not integrate all of the predominant mechanical aspects of CMP into a single framework. Additionally, the use of empirical fitting parameters decreases the generality of existing predictive CMP models. Therefore, the focus of this study is to develop an integrated computational modeling approach that incorporates the key physics behind CMP without using empirical fitting parameters. CMP consists of the interplay of four key tribological phenomena—fluid mechanics, particle dynamics, contact mechanics, and resulting wear. When these physical phenomena are all actively engaged in a sliding contact, the authors call this particle-augmented mixed lubrication (PAML). By considering all of the PAML phenomena in modeling particle-induced wear (or material removal), this model was able to predict wear-in silico from a measured surface topography during CMP. The predicted material removal rate (MRR) was compared with experimental measurements of copper CMP. A series of parametric studies were also conducted in order to predict the effects of varying slurry properties such as solid fraction and abrasive particle size. The results from the model are promising and suggest that a tribological framework is in place for developing a generalized first-principle PAML modeling approach for predicting CMP.

1.
Nanz
,
G.
, and
Camilletti
,
L. E.
, 1995, “
Modeling of Chemical-Mechanical Polishing: A Review
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
8
(
4
), pp.
382
389
.
2.
Zantye
,
P. B.
,
Kumar
,
A.
, and
Sikder
,
A. K.
, 2004, “
Chemical Mechanical Planarization for Microelectronics Applications
,”
Mater. Sci. Eng., R.
0927-796X,
45
(
3-6
), pp.
89
220
.
3.
Castillo-Mejia
,
D.
, and
Beaudoin
,
S.
, 2003, “
A Locally Relevant Prestonian Model for Wafer Polishing
,”
J. Electrochem. Soc.
0013-4651,
150
(
2
), pp.
G96
G102
.
4.
Seok
,
J.
,
Sukam
,
C. P.
,
Kim
,
A. T.
,
Tichy
,
J. A.
, and
Cale
,
T. S.
, 2003, “
Multiscale Material Removal Modeling of Chemical Mechanical Polishing
,”
Wear
0043-1648,
254
(
3-4
), pp.
307
320
.
5.
Luo
,
J.
, and
Dornfeld
,
D. A.
, 2001, “
Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
14
(
2
), pp.
112
133
.
6.
Zeng
,
T. F.
, and
Sun
,
T.
, 2005, “
Size Effect of Nanoparticles in Chemical Mechanical Polishing: A Transient Model
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
18
(
4
), pp.
655
663
.
7.
Che
,
W.
,
Guo
,
Y. J.
,
Chandra
,
A.
, and
Bastawros
,
A.
, 2005, “
A Scratch Intersection Model of Material Removal During Chemical Mechanical Planarization (CMP)
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
3
), pp.
545
554
.
8.
Zhao
,
Y. W.
, and
Chang
,
L.
, 2002, “
A Micro-Contact and Wear Model for Chemical-Mechanical Polishing of Silicon Wafers
,”
Wear
0043-1648,
252
(
3-4
), pp.
220
226
.
9.
Lin
,
J. F.
,
Chern
,
J. D.
,
Chang
,
Y. H.
,
Kuo
,
P. L.
, and
Tsai
,
M. S.
, 2004, “
Analysis of the Tribological Mechanisms Arising in the Chemical Mechanical Polishing of Copper-Film Wafers
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
185
199
.
10.
Ouma
,
D. O.
,
Boning
,
D. S.
,
Chung
,
J. E.
,
Easter
,
W. G.
,
Saxena
,
V.
,
Misra
,
S.
, and
Crevasse
,
A.
, 2002, “
Characterization and Modeling of Oxide Chemical-Mechanical Polishing Using Planarization Length and Pattern Density Concepts
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
15
(
2
), pp.
232
244
.
11.
Chekina
,
O. G.
,
Keer
,
L. M.
, and
Liang
,
H.
, 1998, “
Wear-Contact Problems and Modeling of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
145
(
6
), pp.
2100
2106
.
12.
Terrell
,
E. J.
, and
Higgs
,
C. F.
, 2006, “
Hydrodynamics of Slurry Flow in Chemical Mechanical Polishing: A Review
,”
J. Electrochem. Soc.
0013-4651,
153
(
6
), pp.
K15
K22
.
13.
Runnels
,
S. R.
, 1994, “
Feature-Scale Fluid-Based Erosion Modeling for Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
141
(
7
), pp.
1900
1904
.
14.
Yao
,
C. H.
,
Feke
,
D. L.
,
Robinson
,
K. M.
, and
Meikle
,
S.
, 2000, “
Modeling of Chemical Mechanical Polishing Processes Using a Discretized Geometry Approach
,”
J. Electrochem. Soc.
0013-4651,
147
(
4
), pp.
1502
1512
.
15.
Higgs
,
C. F.
,
Ng
,
S. H.
,
Borucki
,
L.
,
Yoon
,
I.
, and
Danyluk
,
S.
, 2005, “
A Mixed-Lubrication Approach to Predicting CMP Fluid Pressure Modeling and Experiments
,”
J. Electrochem. Soc.
0013-4651,
152
(
3
), pp.
G193
G198
.
16.
Terrell
,
E. J.
, and
Higgs
,
C. F.
, 2007, “
A Modeling Approach for Predicting the Abrasive Particle Motion During Chemical Mechanical Polishing
,”
ASME J. Tribol.
0742-4787,
129
(
4
), pp.
933
941
.
17.
Shen
,
X.
, and
Bogy
,
D. B.
, 2003, “
Particle Flow and Contamination in Slider Air Bearings for Hard Disk Drives
,”
ASME J. Tribol.
0742-4787,
125
(
2
), pp.
358
363
.
18.
Terrell
,
E. J.
, and
Higgs
,
C. F.
, 2007, “
A Simulation of Contaminates Around the Solid Immersion Lens in a Near-Field Optical Recording System
,”
IEEE Trans. Magn.
0018-9464,
43
(
3
), pp.
1086
1092
.
19.
Zhang
,
S.
, and
Bogy
,
D. B.
, 1997, “
Effects of Lift on the Motion of Particles in the Recessed Regions of a Slider
,”
Phys. Fluids
1070-6631,
9
(
5
), pp.
1265
1272
.
20.
Sieburg
,
H. B.
, 1990, “
Physiological Studies in Silico
,”
Lectures in Complex Systems
,
L.
Nadel
and
D. L.
Stein
, eds.,
Westview Press
,
Boulder, CO
, pp.
321
342
.
21.
Terrell
,
E. J.
, and
Higgs
,
C. F.
, 2006, “
Contact Stress Analysis of Thin Film Compression: Modeling, Simulation, and Experiment
,” ASME Paper No. IJTC2006-12300.
22.
Terrell
,
E. J.
,
Kuo
,
M.
, and
Higgs
,
C. F.
, 2007, “
An Approach to Modeling Particle-Based and Contact-Based Wear in CMP
,”
Proceedings of the Materials Research Society Symposium
, Vol.
991
.
23.
Dickrell
,
D. J.
,
Dugger
,
M. T.
,
Hamilton
,
M. A.
, and
Sawyer
,
W. G.
, 2007, “
Direct Contact-Area Computation for MEMS Using Real Topographic Surface Data
,”
J. Microelectromech. Syst.
,
16
(
5
), pp.
1263
1268
. 1057-7157
24.
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
, 2005, “
A 3D EHL Simulation of CMP: Theoretical Framework of Modeling
,”
J. Electrochem. Soc.
0013-4651,
152
(
1
), pp.
G7
G15
.
25.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, England
.
26.
Shan
,
L.
,
Levert
,
J.
,
Meade
,
L.
,
Tichy
,
J.
, and
Danyluk
,
S.
, 2000, “
Interfacial Fluid Mechanics and Pressure Prediction in Chemical Mechanical Polishing
,”
ASME J. Tribol.
0742-4787,
122
(
3
), pp.
539
543
.
27.
Sundararajan
,
S.
,
Thakurta
,
D. G.
,
Schwendeman
,
D. W.
,
Murarka
,
S. P.
, and
Gill
,
W. N.
, 1999, “
Two-Dimensional Wafer-Scale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Transport
,”
J. Electrochem. Soc.
0013-4651,
146
(
2
), pp.
761
766
.
28.
Chorin
,
A. J.
, 1968, “
Numerical Solution of Navier-Stokes Equations
,”
Math. Comput.
0025-5718,
22
(
104
), pp.
745
762
.
29.
Cherukat
,
P.
, and
Mclaughlin
,
J. B.
, 1994, “
Inertial Lift on a Rigid Sphere in a Linear Shear Flow Field Near a Flat Wall
,”
J. Fluid Mech.
0022-1120,
263
, pp.
1
18
.
30.
Zhang
,
S.
,
Wang
,
L.
,
Jones
,
P.
, and
Lopatin
,
G.
, 1999, “
Numerical and Experimental Study of the Particle Contamination in a Head/Media Interface
,”
IEEE Trans. Magn.
0018-9464,
35
(
5
), pp.
2442
2444
.
31.
Joseph
,
G. G.
,
Zenit
,
R.
, and
Hunt
,
M. L.
, 2001, “
Particle-Wall Collisions in a Viscous Fluid
,”
J. Fluid Mech.
,
433
(
1
), pp.
329
346
. 0022-1120
32.
Gondret
,
P.
,
Lance
,
M.
, and
Petit
,
L.
, 2002, “
Bouncing Motion of Spherical Particles in Fluids
,”
Phys. Fluids
1070-6631,
14
(
2
), pp.
643
652
.
33.
Frenkel
,
D.
, and
Smit
,
B.
, 2002,
Understanding Molecular Simulations: From Algorithms to Applications
,
Academic
,
Orlando, FL
.
34.
Thomas
,
J. A.
, and
Mcgaughey
,
A. J. H.
, 2007, “
Effect of Surface Wettability on Liquid Density, Structure, and Diffusion Near a Solid Surface
,”
J. Chem. Phys.
0021-9606,
126
(
3
), p.
034707
.
35.
Larsen-Basse
,
J.
, and
Liang
,
H.
, 1999, “
Probable Role of Abrasion in Chemo-Mechanical Polishing of Tungsten
,”
Wear
,
233–235
, pp.
647
654
. 0043-1648
36.
Totten
,
G. E.
, and
Liang
,
H.
, 2004,
Mechanical Tribology: Materials, Characterization, and Applications
,
Dekker
,
New York
.
37.
Bielmann
,
M.
,
Mahajan
,
U.
, and
Singh
,
R. K.
, 1999, “
Effect of Particle Size During Tungsten Chemical Mechanical Polishing
,”
Electrochem. Solid-State Lett.
1099-0062,
2
(
8
), pp.
401
403
.
38.
Luo
,
J.
, and
Dornfeld
,
D. A.
, 2003, “
Effects of Abrasive Size Distribution in Chemical Mechanical Planarization: Modeling and Verification
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
16
(
3
), pp.
469
476
.
You do not currently have access to this content.