The negative squeeze lubrication problem is investigated by means of numerical simulations that account for the dynamics of vaporization. The model is based on bubble dynamics, governed by the Rayleigh–Plesset equation, and the Reynolds equation for compressible fluids. Unlike most existing simulation models our model can predict tensile stresses in the fluid film prior to its rupture, which is in accordance with experimental evidence.

1.
Spurk
,
J.
, 1997,
Fluid Mechanics
,
Springer-Verlag
,
Berlin
.
2.
Dowson
,
D.
, and
Taylor
,
C. M.
, 1979, “
Cavitation in Bearings
,”
Annu. Rev. Fluid Mech.
0066-4189,
11
, pp.
35
66
.
3.
Optasanu
,
V.
, and
Bonneau
,
D.
, 2000, “
Finite Element Mass-Conserving Cavitation Algorithm in Pure Squeeze Motion—Validation/Application to a Connecting-Rod Small End Bearing
,”
ASME J. Tribol.
0742-4787,
122
, pp.
162
169
.
4.
Hays
,
D. F.
, and
Feiten
,
J. B.
, 1964, “
Cavities Between Moving Parallel Plates
,”
Cavitation in Real Liquids
,
R.
Davies
, ed.,
Elsevier
,
New York
, pp.
122
127
.
5.
Parkins
,
D. W.
, and
May-Miller
,
R.
, 1984, “
Cavitation in an Oscillatory Oil Squeeze Film
,”
ASME J. Tribol.
,
106
, pp.
360
367
. 0742-4787
6.
Chen
,
X.
,
Sun
,
M.
,
Wang
,
W.
,
Sun
,
D. C.
,
Zhang
,
Z.
, and
Wang
,
X.
, 2004, “
Experimental Investigation of Time Dependent Cavitation in an Oscillatory Squeeze Film
,”
Sci. China, Ser. G
,
47
, pp.
107
112
. 0742-4787
7.
Wang
,
W.
,
Zhang
,
Z.
,
Chen
,
X.
,
Sun
,
M.
, and
Sun
,
D. C.
, 2005, “
Investigation of Cavitation Phenomenon in an Oscillatory Oil Squeeze Film
,”
Proceedings of the World Tribology Congress III
, Washington, DC, Paper No. WTC2005–64167.
8.
Sun
,
D. C.
,
Zhang
,
Z.
,
Wang
,
W.
,
Sun
,
M.
, and
Chen
,
X.
, 2005, “
A Theory of Cavitation in an Oscillatory Oil Squeeze Film
,”
Proceedings of the World Tribology Congress III
, Washington, DC, Paper No. WTC2005–64159.
9.
Sun
,
D. C.
, and
Brewe
,
D. E.
, 1992, “
Two Reference Time Scales for Studying the Dynamic Cavitation of Liquid Films
,”
ASME J. Tribol.
0742-4787,
114
, pp.
612
615
.
10.
Elrod
,
H. G.
, and
Adams
,
M. L.
, 1974, “
A Computer Program for Cavitation and Starvation Problems
,”
Proceedings of the First Leeds-Lyon Symposium on Tribology
, Leeds University, England.
11.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, Jr.
, 1990, “
An Efficient, Robust and Time Accurate Numerical Scheme Applied to Cavitation Algorithm
,”
ASME J. Tribol.
0742-4787,
112
, pp.
44
51
.
12.
Boedo
,
S.
, and
Booker
,
J. F.
, 1995, “
Cavitation in Normal Separation of Square and Circular Plates
,”
ASME J. Tribol.
0742-4787,
117
, pp.
403
410
.
13.
Kumar
,
A.
, and
Booker
,
J. F.
, 1991, “
A Finite Element Cavitation Algorithm
,”
ASME J. Tribol.
0742-4787,
113
, pp.
276
286
.
14.
Sahlin
,
F.
,
Almqvist
,
A.
,
Larsson
,
R.
, and
Glavatskih
,
S.
, 2007, “
A Cavitation Algorithm for Arbitrary Lubricant Compressibility
,”
Tribol. Int.
0301-679X,
40
, pp.
1294
1300
.
15.
Hajjam
,
M.
, and
Bonneau
,
D.
, 2007, “
A Transient Finite Element Cavitation Algorithm With Application to Radial Lip Seals
,”
Tribol. Int.
0301-679X,
40
, pp.
1258
1269
.
16.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
, 2006, “
Micro-Roughness Effects in (Elasto)Hydrodynamic Lubrication Including a Mass-Flow Preserving Cavitation Model
,”
Tribol. Int.
0301-679X,
39
, pp.
1707
1718
.
17.
Streator
,
J. L.
, 2006, “
An Approximate Analytical Model for the Separation of a Sphere From a Flat in the Presence of a Liquid
,”
ASME J. Tribol.
0742-4787,
128
, pp.
431
435
.
18.
Sauer
,
J.
, 2000, “
Instationär Kavitierende Strömungen—ein Neues Modell Basierend auf Front Capturing und Blasendynamik
,” Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany.
19.
Sauer
,
J.
, and
Schnerr
,
G. H.
, 2000, “
Development of a New Cavitation Model Based on Bubble Dynamics
,”
Z. Angew. Math. Mech.
,
80
, pp.
S731
S732
. 0044-2267
20.
Geike
,
T.
, and
Popov
,
V. L.
, 2008, “
Cavitation Within the Framework of Reduced Description of Mixed Lubrication
,”
Tribol. Int.
, to be published; 2006, also presented at the
Proceedings of the German-Russian Workshop on Wear: Physical Backgrounds and Numerical Simulations
, Apr. 0044-2267
21.
Geike
,
T.
, and
Popov
,
V. L.
, 2007, “
Reduction of Three-Dimensional Contact Problems to One-Dimensional Ones
,”
Tribol. Int.
0301-679X,
40
, pp.
924
929
.
22.
Geike
,
T.
, and
Popov
,
V. L.
, 2007, “
Mapping of Three-Dimensional Contact Problems Into One Dimension
,”
Phys. Rev. E
1063-651X,
76
, p.
036710
.
23.
Geike
,
T.
, and
Popov
,
V. L.
, 2008, “
Reduced Description of Mixed Lubrication
,”
Tribol. Int.
0301-679X,
41
, pp.
542
548
.
24.
Rayleigh
L.
, 1917, “
Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
0031-8086,
34
, pp.
94
98
.
25.
Plesset
,
M. S.
, 1949, “
The Dynamics of Cavitation Bubbles
,”
ASME Trans. J. Appl. Mech.
0021-8936,
16
, pp.
277
282
.
26.
Plesset
,
M. S.
, and
Prosperetti
,
A.
, 1977, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
145
185
.
27.
Gohar
,
R.
, 2001,
Elastohydrodynamics
,
2nd ed.
,
Imperial College
,
London, UK
.
28.
Shu
,
C.
, 2000,
Differential Quadrature and Its Applications in Engineering
,
Springer
,
Berlin
.
29.
Strehmel
,
K.
, and
Weimar
,
R.
, 1995,
Numerik Gewöhnlicher Differentialgleichungen
,
Teubner-Verlag
,
Stuttgart, Germany
.
30.
Shampine
,
L. F.
,
Reichelt
,
M. W.
, and
Kierzenka
,
J. A.
, 1999, “
Solving Index-1 DAEs in Matlab and Simulink
,”
SIAM Rev.
0036-1445,
41
, pp.
538
552
.
You do not currently have access to this content.