Thermomechanical actuation (TMA) at the transducer region of the air bearing surface (ABS) protrudes from the transducer toward the recording media. This actuation induces a change in the air bearing pressure and a concomitant lift of the slider. The actual actuation in flying height divided by the TMA protrusion, defined as the TMA efficiency, is intimately coupled to the ABS design. After introducing an expression describing the changes in the air bearing forces due to the TMA protrusion, three approaches are proposed that facilitate the optimization of the ABS design for improving the TMA efficiency. These approaches include (a) reducing the air bearing pressure, (b) reducing the size of the TMA affected area, and (c) decoupling the peak air bearing pressure area from the TMA affected area. To illustrate these approaches, several ABS designs are evaluated by comparing their TMA efficiencies.

1.
Kurita
,
M.
,
Shiramatsu
,
T.
,
Miyake
,
K.
,
Kato
,
A.
,
Soga
,
M.
,
Tanaka
,
H.
,
Saegusa
,
S.
, and
Suk
,
M.
, 2006, “
Active Flying-Height Control Slider Using MEMS Thermal Actuator
,”
Microsyst. Technol.
0946-7076,
12
(
4
), pp.
369
375
.
2.
Pust
,
L.
,
Rea
,
C. J. T.
, and
Gangopadhyay
,
S.
, 2002, “
Thermomechanical Head Performance
,”
IEEE Trans. Magn.
0018-9464,
38
(
1
), pp.
101
106
.
3.
Gupta
,
B. K.
,
Young
,
K.
,
Chilamakuri
,
S. K.
, and
Menon
,
A. K.
, 2001, “
On the Thermal Behavior of Giant Magnetoresistance Heads
,”
ASME J. Tribol.
0742-4787,
123
(
2
), pp.
380
387
.
4.
Nikitin
,
V.
,
Gider
,
S.
,
Tabib
,
J.
,
Hsiao
,
D.
,
Salo
,
M.
,
Sui
,
G.
,
Yuan
,
S.
,
Satoh
,
N. A.
,
Xu
,
J.
, and
Maruyama
,
Y.
, 2004, “
Spatial and Temporal Profiling of Protrusion in Magnetic Recording Heads
,”
IEEE Trans. Magn.
0018-9464,
40
(
1
), pp.
326
331
.
5.
Aoki
,
K.
,
Hoshino
,
T.
,
Iwase
,
T.
,
Imamura
,
T.
, and
Aruga
,
K.
, 2005, “
Thermal Pole-Tip Protrusion Analysis of Magnetic Heads for Hard Disk Drives
,”
IEEE Trans. Magn.
0018-9464,
41
(
10
), pp.
3043
3045
.
6.
Wang
,
R.-H.
,
Wu
,
X. Z.
,
Weresin
,
W.
, and
Ju
,
Y. S.
, 2001, “
Head Protrusion and Its Implication on Head-Disk Interface Reliability
,”
IEEE Trans. Magn.
0018-9464,
37
(
4
), pp.
1842
1844
.
7.
Kurita
,
M.
,
Xu
,
J.
,
Tokuyama
,
M.
,
Nakamoto
,
K.
,
Saegusa
,
S.
, and
Maruyama
,
Y.
, 2005, “
Flying-height reduction of magnetic-head slider due to thermal protrusion
,”
IEEE Trans. Magn.
0018-9464,
41
(
10
), pp.
3007
3009
.
8.
Juang
,
J.-Y.
,
Chen
,
D.
, and
Bogy
,
D. B.
, 2006, “
Alternate Air Bearing Slider Designs for Areal Density of 1Tb∕in2
,”
IEEE Trans. Magn.
0018-9464,
42
(
2
), pp.
241
246
.
9.
Juang
,
J.-Y.
, and
Bogy
,
D. B.
, 2007, “
Air-Bearing Effects on Actuated Thermal Pole-Tip Protrusion for Hard Disk Drives
,”
ASME J. Tribol.
0742-4787,
129
, pp.
570
578
.
10.
Li
,
H.
,
Liu
,
B.
,
Ye
,
H.
, and
Chong
,
T.-C.
, 2005, “
Thermally Induced Stability Issues of Head-Disk Interface in Heat-Assisted Magnetic Recording Systems
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
44
(
11
), pp.
7950
7953
.
11.
Lee
,
S.-C.
, and
Strom
,
B. D.
, 2008, “
Characterization of Thermally Actuated Pole Tip Protrusion for Head-Media Spacing Adjustment in Hard Disk Drives
,”
ASME J. Tribol.
0742-4787,
130
, pp.
022001
.
12.
Burgdorfer
,
A.
, 1959, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamics Gas Lubrication Bearing
,”
ASME J. Basic Eng.
0021-9223,
81
(
1
), pp.
94
100
.
13.
Lu
,
S.
, 1997, “
Numerical Simulation of Slider Air Bearing
,” Ph.D. thesis, University of California, Berkeley, CA.
14.
Grisso
,
R.
, and
Bogy
,
D. B.
, 1999, “
The CML Air Bearing Design Program (CMLAir32) Version 5 User Manual
,” CML, University of California, Berkeley, Technical Report No. 9924.
15.
Wallace
,
R. I.
, Jr.
, 1951, “
The Reproduction of Magnetically Recorded Signals
,”
Bell Syst. Tech. J.
0005-8580,
30
, pp.
1145
1173
.
You do not currently have access to this content.