In this paper a computational fluid dynamics (CFD) approach for solving elastohydrodynamic lubrication using the freely available package OPENFOAM is introduced. The full Navier–Stokes equations are solved, which enables the entire flow domain to be modeled and all gradients inside the lubricated contact to be resolved. The phenomenon of cavitation is taken into account by employing a homogenous equilibrium cavitation model, which maintains a specified cavitation pressure inside the cavitating region. The energy equation used considers the effects of heat conduction and convection, viscous heating, and the heat of evaporation. The developed method has been applied to a series of cases of lubricated metal-on-metal line contact with an entrainment velocity of uent=2.5ms, viscosities η0=[0.01,1]Pas, and slide-to-roll ratios SRR=[0,1,2] under both thermal and isothermal conditions. The isothermal results are compared to the Reynolds theory and most results agree very well. Only the high-viscosity pure rolling case shows small differences. The combined effects of temperature, pressure, and shear-thinning are studied for the thermal cases. A temperature-induced shear band occurs in the case of sliding combined with very large viscosity compared to the isothermal case, which results in significant pressure variations across the thickness of the film. The impact of temperature on the friction force is discussed, showing differences of up to 88.5% compared to the isothermal case. The developed method is capable of giving new insights into the physics of elastohydrodynamic lubrication, especially in cases where the usual assumptions of the Reynolds theory break down.

1.
Gohar
,
R.
, 2001,
Elastohydrodynamics
,
2nd ed.
,
Imperial College Press
,
London
.
2.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
3.
Elcoate
,
H. D.
,
Evans
,
C. D.
, and
Hughes
,
T. G.
, 1998, “
On the Coupling of the Elastohydrodynamic Problem
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
212
, pp.
307
318
.
4.
Venner
,
C.
, and
Lubrecht
,
A. A.
, 2000,
Multilevel Methods in Lubrication
,
Elsevier
,
New York
.
5.
Evans
,
H. P.
, and
Hughes
,
T. G.
, 2000, “
Evaluation of Deflection in Semi-Infinite Bodies by a Differential Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
, pp.
563
584
.
6.
Hughes
,
T. G.
,
Elcoate
,
C. D.
, and
Evans
,
H. P.
, 2000, “
Coupled Solution of the Elastohydrodynamic Line Contact Problem Using a Differential Deflection Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
, pp.
585
598
.
7.
Houpert
,
L.
, and
Hamrock
,
B.
, 1985, “
Elastohydrodynamic Calculations Used as a Tool to Studying Scuffing
,” in
Proceedings of the 12th Leeds-Lyon Symposium
8.
Conry
,
T. F.
,
Wang
,
S.
, and
Cusano
,
C.
, 1987, “
A Reynolds-Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
109
, pp.
648
658
.
9.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
, 1977, “
The Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London, Ser. A
1364-5021,
356
, pp.
215
236
.
10.
Roelands
,
C.
, 1966, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,” Ph.D. thesis, Technical University Delft, Delft.
11.
Dowson
,
D.
, and
Higginson
,
G. R.
, 1977,
Elastohydrodynamic Lubrication
,
Pergamon
,
Oxford
.
12.
Dowson
,
D.
, 1962, “
A Generalised Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
0020-7403,
4
, pp.
159
170
.
13.
Spikes
,
H. A.
, 2003, “
The Half-Wetted Bearing. Part 1: Extended Reynolds Equation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
, pp.
1
14
.
14.
Cheng
,
H. S.
, and
Sternlicht
,
B.
, 1965, “
A Numerical Solution for the Pressure, Temperature, and Film Thickness Between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, Under Heavy Loads
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
695
707
.
15.
Yang
,
P.
, and
Wen
,
S.
, 1990, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
Trans. ASME, J. Tribol.
0742-4787,
122
, pp.
631
636
.
16.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
, 2001, “
Thermal Elastohydrodynamic Analysis of Circular Contacts. Part 1: Newtonian Model
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
, pp.
339
352
.
17.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
, 2001, “
Thermal Elastohydrodynamic Analysis of Circular Contacts. Part 2: Non-Newtonian Model
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
, pp.
353
362
.
18.
Kaneta
,
M.
, and
Yang
,
P.
, 2003, “
Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
125
, pp.
731
738
.
19.
Kaneta
,
M.
,
Shigeta
,
T.
, and
Yang
,
P.
, 2005, “
Effect of Compressive Heating on Traction Force and Film Thickness in Point EHL Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
127
, pp.
435
442
.
20.
Jin
,
Z. M.
,
Yang
,
P.
,
Cui
,
J.
, and
Dowson
,
D.
, 2004, “
Transient Elastohydrodynamic Analysis of Elliptical Contacts. Part 1: Isothermal and Newtonian Lubricant Solution
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
218
, pp.
211
224
.
21.
Yang
,
P.
,
Cui
,
J.
,
Jin
,
Z. M.
, and
Dowson
,
D.
, 2005, “
Transient Elastohydrodynamic Analysis of Elliptical Contacts. Part 2: Thermal and Newtonian Lubricant Solution
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
219
, pp.
187
200
.
22.
Cui
,
J.
,
Yang
,
P.
,
Jin
,
Z. M.
, and
Dowson
,
D.
, 2005, “
Transient Elastohydrodynamic Analysis of Elliptical Contacts. Part 3: Non-Newtonian Lubricant Solution Under Isothermal and Thermal Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
219
, pp.
187
200
.
23.
Schäfer
,
C. T.
,
Giese
,
P.
,
Rowe
,
W. B.
, and
Woolley
,
N. H.
, 1999, “
Comparison of Reynolds and Navier-Stokes Approaches for Solving Isothermal EHL Line Contacts
,” in
Proceedings of the 26th Leeds-Lyon Symposium on Tribology
, pp.
57
59
.
24.
Almqvist
,
T.
,
Almqvist
,
A.
, and
Larsson
,
R.
, 2004, “
A Comparison Between Computational Fluid Dynamic and Reynolds Approaches for Simulating Transient EHL Line Contacts
,”
Tribol. Int.
0301-679X,
37
, pp.
61
69
.
25.
Almqvist
,
T.
, and
Larsson
,
R.
, 2002, “
The Navier-Stokes Approach for Thermal EHL Line Contact Solutions
,”
Tribol. Int.
0301-679X,
35
, pp.
163
170
.
26.
Almqvist
,
T.
, and
Larsson
,
R.
, 2004, “
Some Remarks on the Validity of Reynolds Equation in the Modeling of Lubricant Film Flows on the Surface Roughness Scale
,”
ASME J. Tribol.
0742-4787,
126
, pp.
703
710
.
27.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
, 2004,
Fundamentals of Fluid Film Lubrication
,
2nd ed.
,
McGraw-Hill
,
New York
.
28.
Weller
,
H.
, 2004, User Guide,
OpenCFD Limited
, www.opencfd.co.ukwww.opencfd.co.uk
29.
Dowson
,
D.
, and
Taylor
,
C. M.
, 1974, “
Fundamental Aspects of Cavitation in Bearings, Cavitation and Related Phenomena in Lubrication
,”
Proceedings of the 1st Leeds-Lyon Symposium on Tribology
.
30.
Brown
,
S. R.
, and
Hamilton
,
G. M.
, 1978, “
Negative Pressures Under a Lubricated Piston Ring
,”
J. Mech. Eng. Sci.
0022-2542,
20
, pp.
49
57
.
31.
Kaneko
,
S.
,
Yuji
,
H.
, and
Hiroki
,
I.
, 1996, “
Analysis of Oil-Film Pressure Distribution in Porous Journal Bearing Under Hydrodynamic Lubrication Conditions Using an Improved Boundary Condition
,” in
Proceedings of the 1996 ASME∕STLE Joint Tribology Conference
, pp.
1
8
.
32.
Wissussek
,
D.
, 1978, “
Das Hydrodynamische Druckprofil im Radialgleitlager und Sein Einfluss auf Die Tragfaehigkeit bei Variation des Umgebungsdruckes
,” Technical Report, Fortschritt-Berichte der VDI-Zeitschriften, Reihe 4: Bauingenieurwesen.
33.
Houpert
,
L.
, 1985, “
New Results of Traction Force Calculations in EHD Contacts
,”
ASME J. Tribol.
0742-4787,
107
, pp.
241
248
.
34.
Gohar
,
R.
, 2001,
Elastohydrodynamcis
,
2nd ed.
,
Imperial College Press
,
London
, p.
243
.
35.
Bair
,
S.
,
Jarzynski
,
J.
, and
Winer
,
W. O.
, 2001, “
The Temperature, Pressure and Time Dependence of Lubricant Viscosity
,”
Tribol. Int.
0301-679X,
34
, pp.
461
486
.
36.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1986,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon
,
Oxford
.
37.
Jaeger
,
J.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
Proceedings of the Royal Society of NSW 76
, pp.
203
224
.
38.
Issa
,
R. I.
, 1986, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
39.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1947, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech. Scand., Mech. Eng. Ser.
0001-687X,
1
(
3
).
40.
Ioannides
,
E.
, and
Harris
,
T. A.
, 1985, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
0742-4787,
107
(
3
), pp.
367
378
.
You do not currently have access to this content.