The tribological aspects of contact are greatly affected by the friction throughout the contact interface. Generally, contact of deformable bodies is a nonlinear problem. Introduction of the friction with its irreversible character makes the contact problem more difficult. Furthermore, when one or more of the contacting bodies is made of a viscoelastic material, the problem becomes more complicated. A nonlinear time-dependent contact problem is addressed. The objective of the present work is to develop a computational procedure capable of handling quasistatic viscoelastic frictional contact problems. The contact problem as a convex programming model is solved by using an adaptive incremental procedure. The contact constraints are incorporated into the model by using the Lagrange multiplier method. In addition, a local-nonlinear nonclassical friction model is adopted to model the friction at the contact interface. This eliminates the difficulties that arise with the application of the classical Coulomb’s law. On the other hand, the Wiechert model, as an effective model capable of describing both creep and relaxation phenomena, is adopted to simulate the linear behavior of viscoelastic materials. The resulting constitutive integral equations are linearized; therefore, complications that arise during the integration of these equations, especially with contact problems, are avoided. Two examples are presented to demonstrate the applicability of the proposed method.

1.
Bowden
,
F. P.
and
Tabor
,
D.
, 1973,
Friction, An Introduction to Tribology
,
Heinemann Educational Books Ltd
,
London
.
2.
Tworzydlo
,
W. W.
,
Cecot
,
W.
,
Oden
,
J. T.
, and
Yew
,
C. H.
, 1998, “
A Computational Micro- and Macro-Scopic Models of Contact and Friction: Formulation Approach and Applications
,”
Wear
0043-1648,
220
, pp.
113
140
.
3.
Oden
,
J. T.
, and
Pires
,
E. B.
, 1983, “
Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
67
76
.
4.
Oden
,
J. T.
, and
Pires
,
E. B.
, 1984, “
Algorithms and Numerical Results for Finite Element Approximations of Contact Problems With Non-Classical Friction Laws
,”
Comput. Struct.
0045-7949,
19
(
1–2
), pp.
137
147
.
5.
Chen
,
W. H.
,
Chang
,
C. M.
, and
Yeh
,
J. T.
, 1991, “
Finite Element Analysis of Viscoelastic Contact Problems With Friction
,”
The 15th National Conference on Theoretical and Applied Mechanics
,
Tainan, Taiwan, R.O.C.
, pp.
713
720
.
6.
Rochdi
,
M.
,
Shillor
,
M.
, and
Sofonea
,
M.
, 1998, “
Quasistatic Viscoelastic Contact With Normal Compliance and Friction
,”
J. Elast.
0374-3535,
51
, pp.
105
126
..
7.
Shillor
,
M.
, and
Sofonea
,
M.
, 2000, “
A Quasistatic Viscoelastic Contact Problem With Friction
,”
Int. J. Eng. Sci.
0020-7225,
38
, pp.
1517
1533
..
8.
Awbi
,
B.
,
Rochdi
,
M.
, and
Sofonea
,
M.
, 2000, “
Abstract Evolution Equations for Viscoelastic Frictional Contact Problems
,”
J. Appl. Math. Phys.
,
50
, pp.
1
18
.
9.
Han
,
W.
, and
Sofonea
,
M.
, 2000, “
Evolutionary Variational Inequalities Arising in Frictional Contact Problems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
38
, pp.
556
579
..
10.
Awbi
,
B.
,
Chau
,
O.
, and
Sofonea
,
M.
, 2002, “
Variational and Numerical Analysis for a Frictional Contact Problem for Viscoelastic Bodies
,”
Inter. Math. J.
,
1
, pp.
333
348
.
11.
Han
,
W.
, and
Sofonea
,
M.
, 2002,
Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity
,
Studies in Advanced Mathematics
, Vol.
30
,
AMS-IP
,
Somerville, MA
.
12.
Campo
,
M.
,
Fernandez
,
J. R.
, and
Viano
,
J. M.
, 2006, “
Numerical Analysis and Simulation of a Quasistatic Frictional Contact Problem With Damage in Viscoelasticity
,”
J. Comput. Appl. Math.
0377-0427,
192
(
1
), pp.
30
39
.
13.
Hopkins
,
I. L.
, and
Hamming
,
R. W.
, 1957, “
On Creep and Relaxation
,”
J. Appl. Phys.
0021-8979,
28
(
8
), pp.
906
909
..
14.
Lee
,
E. H.
, and
Rogers
,
T. G.
, 1963, “
Solution of Viscoelastic Stress Analysis Problems Using Measured Creep or Relaxation Functions
,”
ASME J. Appl. Mech.
0021-8936,
30
(
1
), pp.
127
133
..
15.
Taylor
,
R. L.
, and
Chang
,
T. Y.
, 1966, “
An Approximate Method for Thermoviscoelastic Stress Analysis
,”
Nucl. Eng. Des.
0029-5493,
4
(
1
), pp.
21
28
.
16.
Taylor
,
R. L.
,
Pister
,
K. S.
, and
Goudreau
,
G. L.
, 1970, “
Thermomechanical Analysis of Viscoelastic Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
2
(
1
), pp.
45
59
.
17.
Zocher
,
M. A.
, 1995, “
A Thermoviscoelastic Finite Element Formulation for the Analysis of Composites
,” Ph.D. thesis, Texas A&M University, College Station, TX.
18.
Zocher
,
M. A.
,
Groves
,
S. E.
, and
Allen
,
D. H.
, 1997, “
A Three-Dimensional Finite Element Formulation for Thermoviscoelastic Orthotropic Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
2267
2288
.
19.
Jurkiewiez
,
B.
,
Destrebecq
,
J. F.
, and
Vergne
,
A.
, 1999, “
Incremental Analysis of Time-Dependent Effects in Composite Structures
,”
Comput. Struct.
0045-7949,
73
, pp.
425
435
.
20.
Mahmoud
,
F. F.
,
Al-Saffar
,
A. K.
, and
El-Hadi
,
A. M.
, 1991, “
Solution of the Non-Conformal Unbonded Contact Problems by the Incremental Convex Programming Method
,”
Comput. Struct.
0045-7949,
35
(
1/2
), pp.
1
8
.
21.
Hassan
,
M. M.
, and
Mahmoud
,
F. F.
, 2005, “
A Generalized Adaptive Incremental Approach for Solving Inequality Problems of Convex Nature
,”
Struct. Eng. Mech.
1225-4568,
18
(
4
), pp.
461
474
.
22.
Williams
,
M. L.
, 1964, “
Structural Analysis of Viscoelastic Materials
,”
AIAA J.
0001-1452,
2
(
5
), pp.
785
808
.
23.
Rabinowicz
,
E.
, 1995,
Friction and Wear of Materials
,
2nd ed.
,
Wiley
,
New York
.
24.
Dunders
,
J.
, 1974,
Properties of Elastic Bodies in Contact
,
Delft University Press
,
Delft
.
25.
Schapery
,
R. A.
, 1974, “
Viscoelastic Behavior and Analysis of Composite Materials
,” in
Mechanics of Composite Materials
,
G. P.
Sendeckyj
, ed.,
Academic
,
New York
, Vol.
2
, pp.
85
168
.
26.
Mahmoud
,
F. F.
,
Ali-Eldin
,
S. S.
,
Hassan
,
M. M.
, and
Emam
,
S. A.
, 1998, “
An Incremental Mathematical Programming Model for Solving Multi-Phase Frictional Contact Problems
,”
Comput. Struct.
0045-7949,
68
, pp.
567
581
.
27.
Mohamed
,
S. A.
,
Helal
,
M. M.
, and
Mahmoud
,
F. F.
, 2006, “
An Incremental Convex Programming Model of the Elastic Frictional Contact Problems
,”
Struct. Eng. Mech.
1225-4568,
23
(
4
), pp.
431
447
.
28.
Fletcher
,
R.
, 1987,
Practical Methods of Optimization
,
2nd ed.
,
Wiley
,
New York
.
29.
Mahmoud
,
F. F.
,
El-Shafei
,
A. G.
, and
Attia
,
M. A.
, 2007, “
An Incremental Adaptive Procedure for Viscoelastic Contact Problems
,”
ASME J. Tribol.
0742-4787,
129
, pp.
305
313
.
30.
Machiraju
,
C.
,
Phan
,
A. V.
,
Pearsall
,
A. W.
, and
Madanagopal
,
S.
, 2006, “
Viscoelastic Studies of Human Subscapularis Tendon: Relaxation Test and a Wiechert Model
,”
Comput. Methods Programs Biomed.
0169-2607,
83
, pp.
29
33
.
31.
Stupkiewicz
,
S.
, 2001, “
Extension of the Node-to-Segment Contact Element for Surface-Expansion-Dependent Contact Laws
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
739
759
.
32.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ
.
33.
Lee
,
E. H.
, and
Radok
,
R. M.
, 1960, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
0021-8936,
27
(
3
), pp.
438
444
.
34.
Yang
,
W. H.
, 1966, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
0021-8936,
33
(
2
), pp.
395
401
.
35.
Hunter
,
S. C.
, 1960, “
The Hertz Problem for a Rigid Spherical Indenter and a Viscoelastic Half-Space
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
219
234
.
36.
Naghieh
,
G. R.
,
Jin
,
Z. M.
, and
Rahnejat
,
H.
, 1998, “
Contact Characteristics of Viscoelastic Bonded Layers
,”
Appl. Math. Model.
0307-904X,
22
, pp.
569
581
.
37.
Abdel Rahman
,
A. A.
, 2006, “
Effect of Material Viscosity on the Response of Elasto-Frictional Multi-Layered Contact Systems
,” MS thesis, Zagazig University, Zagazig, Egypt.
You do not currently have access to this content.