A general transient elastohydrodynamic lubrication model was developed for artificial hip joint implants, particularly in which the three-dimensional time-dependent physiological load and motion components experienced during walking conditions were considered in the theoretical formulation, although only a predominantly vertical load combined with a flexion-extension motion was actually solved. A nominal ball-in-socket configuration was adopted to represent the articulation between the femoral head and the acetabular cup in both simplified and anatomical positions. An appropriate spherical coordinate system and the corresponding mesh grids were used in the general transient lubrication model. Additionally, an equivalent discrete spherical convolution model and the corresponding spherical fast Fourier transform technique were employed to facilitate the evaluation of elastic deformation of spherical bearing surfaces in hip joint implants. The general lubrication model was subsequently applied to investigate the transient lubrication performance of a typical metal-on-metal hip joint implant. The effects of both cup inclination angles in either anatomical or horizontally simplified positions and different lubricant viscosities on the transient elastohydrodynamic lubrication were analyzed under the predominant components of vertically dynamic loading and flexion-extension motion. It was found that the general lubrication model and the numerical methodology were efficient for the transient elastohydrodynamic lubrication analysis during walking condition in hip joint implants. Furthermore, the significant effect of squeeze-film action on maintaining and enhancing the total thin film thickness formation was discussed for the transient lubrication study of the typical hip joint implant.
Skip Nav Destination
e-mail: f.c.wang@bath.ac.uk
Article navigation
January 2008
Research Papers
Transient Elastohydrodynamic Lubrication of Hip Joint Implants
Fengcai Wang,
Fengcai Wang
School of Mechanical Engineering,
e-mail: f.c.wang@bath.ac.uk
University of Leeds
, Leeds LS2 9JT, UK
Search for other works by this author on:
Zhongmin Jin
Zhongmin Jin
School of Mechanical Engineering,
University of Leeds
, Leeds LS2 9JT, UK
Search for other works by this author on:
Fengcai Wang
School of Mechanical Engineering,
University of Leeds
, Leeds LS2 9JT, UKe-mail: f.c.wang@bath.ac.uk
Zhongmin Jin
School of Mechanical Engineering,
University of Leeds
, Leeds LS2 9JT, UKJ. Tribol. Jan 2008, 130(1): 011007 (11 pages)
Published Online: December 17, 2007
Article history
Received:
December 8, 2006
Revised:
September 12, 2007
Published:
December 17, 2007
Citation
Wang, F., and Jin, Z. (December 17, 2007). "Transient Elastohydrodynamic Lubrication of Hip Joint Implants." ASME. J. Tribol. January 2008; 130(1): 011007. https://doi.org/10.1115/1.2806200
Download citation file:
Get Email Alerts
Related Articles
An Elastohydrodynamic Lubrication Model for Coated Surfaces in Point Contacts
J. Tribol (July,2007)
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
J. Tribol (October,2011)
Effects of Couple Stress on Elastohydrodynamic Lubrication at Impact
Loading
J. Tribol (January,2008)
Pure Squeeze Motion in a Magneto-Elastohydrodynamic Lubricated Spherical Conjunction
J. Tribol (October,2010)
Related Proceedings Papers
Related Chapters
Understanding the Problem
Design and Application of the Worm Gear
Compressive Deformation of Hot-Applied Rubberized Asphalt Waterproofing
Roofing Research and Standards Development: 10th Volume
Hydrodynamic Lubrication
Design of Mechanical Bearings in Cardiac Assist Devices