An analytical approach for treating problems involving oscillatory heat source is presented. The transient temperature profile involving circular, rectangular, and parabolic heat sources undergoing oscillatory motion on a semi-infinite body is determined by integrating the instantaneous solution for a point heat source throughout the area where the heat source acts with an assumption that the body takes all the heat. An efficient algorithm for solving the governing equations is developed. The results of a series simulations are presented, covering a wide range of operating parameters including a new dimensionless frequency ω¯=ωl24α and the dimensionless oscillation amplitude A¯=Al, whose product can be interpreted as the Peclet number involving oscillatory heat source, Pe=ω¯A¯. Application of the present method to fretting contact is presented. The predicted temperature is in good agreement with published literature. Furthermore, analytical expressions for predicting the maximum surface temperature for different heat sources are provided by a surface-fitting method based on an extensive number of simulations.

1.
Blok
,
H.
, 1937, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483,
2
, pp.
222
235
.
2.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
0035-9173,
76
, pp.
203
224
.
3.
Francis
,
H. A.
, 1971, “
Interfacial Temperature Distribution Within a Sliding Hertzian Contact
,”
ASLE Trans.
0569-8197,
14
, pp.
41
54
.
4.
Kuhlmann-Wilsdorf
,
D.
, 1987, “
Temperature at Interfacial Contact Spots: Dependence on Velocity and on Role Reversal of Two Materials in Sliding Contact
,”
ASME J. Tribol.
0742-4787,
109
, pp.
321
329
.
5.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1994, “
Maximum and Average Flash Temperature in Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
116
, pp.
167
174
.
6.
Bos
,
J.
, and
Moes
,
H.
, 1995, “
Frictional Heating of Tribological Contacts
,”
ASME J. Tribol.
0742-4787,
117
, pp.
171
177
.
7.
Greenwood
,
J. A.
, 1996, “
Flash Temperatures for Bodies Moving at Equal High Speed in Opposite Directions
,
ASME J. Tribol.
0742-4787,
118
, pp.
255
257
.
8.
Hirano
,
F.
, and
Yoshida
,
S.
, 1966, “
Theoretical Study of Temperature Rise at Contact Surface for Reciprocating Motion
,”
Am. Inst. Chem. Eng. Symp. Ser.
0065-8812,
4
, pp.
127
132
.
9.
Gecim
,
B.
, and
Winer
,
W. O.
, 1985, “
Transient Temperatures in the Vicinity of an Asperity Contact
,”
ASME J. Tribol.
0742-4787,
107
, pp.
333
342
.
10.
Greenwood
,
J. A.
, and
Alliston-Greiner
,
A. F.
, 1992, “
Surface Temperature in a Fretting Contact
,”
Wear
0043-1648,
155
, pp.
269
275
.
11.
Ovaert
,
T. C.
, and
Talmage
,
G.
, 1999, “
The Temperature of Sliding Contacts: Application to the Anisotropic Half-Space
,”
STLE Tribol. Trans.
1040-2004,”
42
, pp.
654
660
.
12.
Qiu
,
L.
, and
Cheng
,
H. S.
, 1998, “
Temperature Rise Simulation of Three-Dimensional Rough Surfaces in Mixed Lubricated Contact
,”
ASME J. Tribol.
0742-4787,
120
, pp.
310
318
.
13.
Gao
,
J.
,
Lee
,
Si. C.
,
Ai
,
X.
, and
Nixon
,
H.
, 2000, “
An FFT-Based Transient Temperature Model for General Three-Dimensional Rough Surface Contacts
,”
ASME J. Tribol.
0742-4787,
122
, pp.
519
523
.
14.
Kennedy
,
F. E.
,
Colin
,
F.
,
Floquet
,
A.
, and
Glovsky
,
R.
, 1984, “
Improved Techniques for Finite Element Analysis of Sliding Surface Temperatures
,”
Developments in Numerical and Experimental Methods Applied to Tribology
,
Butterworths
, London, pp.
138
150
.
15.
Kennedy
,
F. E.
,
Cullen
,
F. C.
, and
Leroy
,
J. M.
, 1989, “
Contact Temperature and Its Effects in An Oscillatory Sliding Contact
,”
ASME J. Tribol.
0742-4787,
111
, pp.
63
69
.
16.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1995, “
Prediction and Measurement of Surface Temperature Rise at the Contact Interface for Oscillatory Sliding
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
209
, pp.
41
51
.
17.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1993, “
Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding Systems
,”
ASME J. Tribol.
0742-4787,
115
, pp.
411
418
.
18.
Mansouri
,
M.
, and
Khonsari
,
M. M.
, 2005, “
Surface Temperature in Oscillating Sliding Interfaces
,”
ASME J. Tribol.
0742-4787,
127
, pp.
1
9
.
19.
Kalin
,
M.
, and
Vižintin
,
J.
, 2001, “
Comparison Different Theoretical Models for Flash Temperature Calculation Under Fretting Conditions
,”
Tribol. Int.
0301-679X,
34
, pp.
831
839
.
20.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
, UK, Chap. 10.
21.
Ling
,
F. F.
,
Lai
,
W. M.
, and
Lucca
,
D. A.
, 2002,
Fundamentals of Surface Mechanics With Applications
,
Springer-Verlag
, New York.
22.
Rice
,
J. R.
, 1971,
Mathematical Software
,
Academic Press
, New York, Chap. 7.
23.
Stroud
,
A. H.
, and
Secrest
,
D.
, 1966,
Gaussian Quadrature Formulas
, Prentice-Hall,
Englewood Cliffs
, NJ.
24.
Carnahan
,
B.
,
Luther
,
H. A.
, and
Wilkes
,
J. O.
, 1969,
Applied Numerical Methods
,
Wiley
, New York.
25.
Vetterling
,
W. T.
,
Teukolsky
,
S. A.
,
Press
,
W. H.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
26.
Hoeppner
,
D. W.
,
Chandrasekaran
,
V.
, and
Elliott
III,
C. B.
, 2000,
Fretting Fatigue: Current Technology and Practices
,
American Society for Testing and Materials (ASTM)
, West Conshohocken, PA, pp.
167
182
.
You do not currently have access to this content.